Skip to main content
Log in

The evolution of dispersal

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract.

A non-local model for dispersal with continuous time and space is carefully justified and discussed. The necessary mathematical background is developed and we point out some interesting and challenging problems. While the basic model is not new, a ‘spread’ parameter (effectively the width of the dispersal kernel) has been introduced along with a conventional rate paramter, and we compare their competitive advantages and disadvantages in a spatially heterogeneous environment. We show that, as in the case of reaction-diffusion models, for fixed spread slower rates of diffusion are always optimal. However, fixing the dispersal rate and varying the spread while assuming a constant cost of dispersal leads to more complicated results. For example, in a fairly general setting given two phenotypes with different, but small spread, the smaller spread is selected while in the case of large spread the larger spread is selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chmaj, A., Ren, X.: Homoclinic solutions of an integral equation: existence and stability. J. Diff. Eqns. 155, 17–43 (1999)

    Article  MATH  Google Scholar 

  2. Dieckmann, U., Law, R., Metz, J. The Geometry of Ecological Interactions: Simplifying Spatial Complexity. Cambridge University Press, Cambridge, 2000

  3. Dieckmann, U., O’Hara, B., Weisser, W.: The evolutionary ecology of dispersal. Trends Ecol. Evol. 14, 88–90 (1999)

    Google Scholar 

  4. Dockery, J., Hutson, V., Mischaikow, K., Pernarowski, M.: The evolution of slow dispersal rates. J. Math. Biol. 37, 61–83 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Doebli, M., Ruxton, G.: Evolution of dispersal rates in metapopulation models: branching and cyclic dynamics in phenotype space. Evolution 51, 1730–1741 (1997)

    Google Scholar 

  6. Duncan, D., Grinfeld, M., Stoleriu, I.: Coarsening in an integro-differential model of phase transitions. Euro. J. Appl. Math. 11, 511–572 (2000)

    Google Scholar 

  7. Feduccia, A.: The Origin and Evolution of Birds. Yale University Press, New Haven. 1996

  8. Ferriere, R., Belthoff, J., Olivieri, I., Krackow, S.: Evolving dispersal: where to go next? Trends Ecol. Evol. 15, 5–7 (2000)

    Article  Google Scholar 

  9. Fife, P.: Mathematical Aspects of Reaction-Diffusion Equations, Lecture Notes in Mathematics. 28, Springer-Verlag, New York, 1979

  10. Fife, P.: An integro-differential analog of semilinear parabolic PDE’s. In: Partial Differential Equations and Applications, eds. P. Marcellini, G. Talent and E. Vesenti, Lecture Notes in Pure and Applied Mathematics 1996, 177, Marcel Dekker.

    Google Scholar 

  11. Fife, P.: Clines and material interfaces with non-local interaction. In: Nonlinear Problems in Applied Mathematics, eds. T.S. Angell, L. Pamela Cook, R.E. Kleinman and W.E. Olmstead 1996, 134–149, SIAM Publications.

    Google Scholar 

  12. Hadeler, K.P.: Reaction-transport systems in biological modelling. In: Mathematics Inspired by Biology, eds. V. Capasso and O. Diekmann, Lecture Notes Mathematics 1999, 1714, Springer-Verlag, New York

    Google Scholar 

  13. Hastings, A.: Can spatial variation alone lead to selection for dispersal? Theor. Pop. Biol. 24, 244–251 (1983)

    MATH  Google Scholar 

  14. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer-Verlag, Berlin. 1981

  15. Hess, P.: Periodic-Parabolic Boundary Value Problems and Positivity. Pitman Research Notes in Mathematics, 247. Longman, New York, 1991

  16. Hofbauer, J., Sigmund, K.: Adaptive dynamics and evolutionary stability. Appl. Math. Lett. 3, 75–79 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Holt, R., McPeek, M.: Chaotic population dynamics favours the evolution of dispersal. Amer. Nat. 148, 709–718 (1996)

    Article  Google Scholar 

  18. Hutson, V., Pym, J.S.: Applications of functional analysis and operator theory. Academic Press, London. 1980

  19. Hutson, V., Mischaikow, K., Poláčik, P.: The evolution of dispersal rates in a heterogeneous, time-periodic environment. J. Math. Biol. 42, 501–533 (2001)

    Article  MathSciNet  Google Scholar 

  20. Johnson, M., Gaines, M.: The evolution of dispersal: theoretical models and empirical tests using birds and mammals. Ann. Rev. Ecol. Syst. 21, 449–480 (1990)

    Article  Google Scholar 

  21. Kot, M., Schaffer, W.: Discrete-time growth-dispersal models. Math. Biosc. 80, 109–136 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kot, M., Lewis, M., van den Driessche, P.: Dispersal data and the spread of invading organisms. Ecology 77, 2027–2042 (1996)

    Google Scholar 

  23. Leung, A.W.: Systems of partial differential equations. Kluwer, Dordrecht. 1989

  24. McPeek, M., Holt, R.: The evolution of dispersal in spatial and temporally varying environments. Amer. Nat. 140, 1010–1027 (1992)

    Article  Google Scholar 

  25. Méndez, V., Pujol, T., Fort, J.: Dispersal probability distributions and the wave-front speed problem. Phys. Rev. E 65, 1–6 (2002)

    Google Scholar 

  26. Metz, J.A.J., Geritz, S.A.H., Meszéna, G., Jacobs, F.J.A., van Heerwaarden, J.S.: Adaptive dynamics: A geometrical study of the consequences of nearly faithful reproduction. In: S.J. van Strien, S.M. Verduyn Lunel (eds), Stochastic and Spatial Structures of Dynamical Systems, KNAW Verhandelingen afd. Natuurkunde Eerste Reeks deel 45. North Holland, Amsterdam, Netherlands 1996, pp. 183–231

  27. Moody, M.: The evolution of migration in subdivided populations I. Haploids. J. Theor. Biol. 131, 1–13 (1988)

    Google Scholar 

  28. Moody, M., Ueda, M.: A diffusion model for the evolution of migration. Preprint.

  29. Murray, J.D.: Mathematical Biology, Springer-Verlag, New York. 1989

  30. Nagylaki, T.: The diffusion model for migration and selection. In: Some Mathematical Questions in Biology: Models in Population Biology ed. A. Hastings , Lectures on Mathematics in the Life Sciences, 20, 1989

    Google Scholar 

  31. Neuhauser, N.: Mathematical challenges in spatial ecology. Notices of the AMS 1304–1314 (2001)

  32. Othmer, H.G., Dunbar, S.R., Alt, W.: Models of dispersal in biological systems. J. Math. Biol. 26, 263–298 (1988)

    Google Scholar 

  33. Pao, C.V.: Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York, 1992

  34. Roughgarden, J.: Theory of Population Genetics and Evolutionary Ecology: An Introduction. Macmillan, New York. 1979

  35. Smith, H.L.: Monotone dynamical systems. Amer. Math. Soc., Providence, R.I. 1995

  36. Taylor, A.E.: Introduction to functional analysis. Wiley, London. 1958

  37. Travis, J.M.J., Dytham, C.: Habitat persistence, habitat availability and the evolution of dispersal. Proc. Roy. Soc. Lon. B 266, 723–728 (1999)

    Article  Google Scholar 

  38. Wang, X.: Metastability and patterns in a convolution model for phase transitions. J. Diff. Eqns. 183, 434–461 (2002)

    Article  MATH  Google Scholar 

  39. Weinberger, H.: Asymptotic behaviour of a model in population genetics. In: Chadan, J. (ed.) Nonlinear PDE’s and Applications, Springer Lecture Notes 648, 47–96 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G.T. Vickers.

Additional information

S. Martinez was partially supported by Fondecyt 1020126 and Fondecyt Lineas Complementarias 8000010. K. Mischaikow was supported in part by NSF Grant DMS 0107396.

Key words or phases: Non-local dispersal – Integral kernel – Evolution of dispersal

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutson, V., Martinez, S., Mischaikow, K. et al. The evolution of dispersal. J. Math. Biol. 47, 483–517 (2003). https://doi.org/10.1007/s00285-003-0210-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-003-0210-1

Keywords

Navigation