Skip to main content
Log in

The probability of fixation of a single mutant in an exchangeable selection model

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The Cannings exchangeable model for a finite population in discrete time is extended to incorporate selection. The probability of fixation of a mutant type is studied under the assumption of weak selection. An exact formula for the derivative of this probability with respect to the intensity of selection is deduced, and developed in the case of a single mutant. This formula is expressed in terms of mean coalescence times under neutrality assuming that the coefficient of selection for the mutant type has a derivative with respect to the intensity of selection that takes a polynomial form with respect to the frequency of the mutant type. An approximation is obtained in the case where this derivative is a continuous function of the mutant frequency and the population size is large. This approximation is consistent with a diffusion approximation under moment conditions on the number of descendants of a single individual in one time step. Applications to evolutionary game theory in finite populations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz M., Stegun I.A. (1965). Handbook of Mathematical Functions. Dover, New York

    Google Scholar 

  2. Cannings C. (1974). The latent roots of certain Markov chains arising in genetics: a new approach. I. Haploid models. Adv. Appl. Probab. 6: 260–290

    Article  MATH  MathSciNet  Google Scholar 

  3. Cherry J.L. (2003). Selection in a subdivided population with dominance or local frequency dependence. Genetics 163: 1511–1518

    Google Scholar 

  4. Eldon B., Wakeley J. (2006). Coalescent processes when the distribution of offspring number among individuals is highly skewed. Genetics 172: 2621–2633

    Article  Google Scholar 

  5. Ewens, W.J.: Mathematical Population Genetics 1. Theoretical Introduction, 2nd edn. Springer, New York (2004)

  6. Fisher R.A. (1930). The Genetical Theory of Natural Selection. Clarendon, Oxford

    MATH  Google Scholar 

  7. Hofbauer J., Sigmund K. (1988). The Theory of Evolution and Dynamical Systems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  8. Imhof L.A., Nowak M.A. (2006). Evolutionary game dynamics in a Wright–Fisher process. J. Math. Biol. 52: 667–681

    Article  MATH  MathSciNet  Google Scholar 

  9. Karlin S., Taylor H.M. (1981). A Second Course in Stochastic Processes. Academic, New York

    MATH  Google Scholar 

  10. Kingman, J.F.C.: Exchangeability and the evolution of large populations. In: Koch, G., Spizzichino, F. (eds.) Exchangeability in Probability and Statistics, pp. 97–112. North-Holland, Amsterdam (1982)

  11. Lambert A. (2006). Probability of fixation under weak selection: a branching process unifying. Theoret. Popul. Biol. 69: 419–441

    Article  MATH  Google Scholar 

  12. Lessard S. (1984). Evolutionary dynamics in frequency-dependent two-phenotype models. Theoret. Popul. Biol. 25: 210–234

    Article  MATH  Google Scholar 

  13. Lessard S. (2005). Long-term stability from fixation probabilities in finite populations: New perspectives for ESS theory. Theoret. Popul. Biol. 68: 19–27

    Article  MATH  Google Scholar 

  14. Leturque H., Rousset F. (2002). Dispersal, kin selection and the ideal free distribution in a spatially heterogeneous population. Theoret. Popul. Biol. 62: 169–180

    Article  MATH  Google Scholar 

  15. Maynard Smith J. (1974). The theory of games and the evolution of animal conflicts. J. Theoret. Biol. 47: 209–221

    Article  MathSciNet  Google Scholar 

  16. Maynard Smith J., Price G.R. (1973). The logic of animal conflict. Nature 246: 15–18

    Article  Google Scholar 

  17. Möhle M. (1998). Robustness results for the coalescent. J. Appl. Probab. 35: 438–447

    Article  MATH  MathSciNet  Google Scholar 

  18. Möhle M. (2004). The time back to the most recent common ancestor in exchangeable population models. Adv. Appl. Probab. 36: 78–97

    Article  MATH  Google Scholar 

  19. Möhle M., Sagitov S. (2001). A classification of coalescent processes for haploid exchangeable population models. Ann. Probab. 29: 1547–1562

    Article  MATH  MathSciNet  Google Scholar 

  20. Moran P.A.P. (1958). Random processes in genetics. Proc. Camb. Philos. Soc. 54: 60–71

    Article  MATH  Google Scholar 

  21. Nowak M.A., Sasaki A., Taylor C., Fudenberg D. (2004). Emergence of cooperation and evolutionary stability in finite populations. Nature 428: 646–650

    Article  Google Scholar 

  22. Orzack S.H., Hines W.G.S. (2005). The evolution of strategy variation: will an ESS evolve?. Evolution 59: 1183–1193

    Article  Google Scholar 

  23. Pitman J. (1999). Coalescents with multiple collisions. Ann. Probab. 27: 1870–1902

    Article  MATH  MathSciNet  Google Scholar 

  24. Proulx S.R. (2000). The ESS under spatial variation with applications to sex allocation. Theoret. Popul. Biol. 58: 33–47

    Article  MATH  Google Scholar 

  25. Rousset F. (2003). A minimal derivation of convergence stability measures. J. Theoret. Biol. 221:   665–668

    Google Scholar 

  26. Rousset F., Billiard S. (2000). A theoretical basis for measures of kin selection in subdivided populations: Finite populations and localized dispersal. J. Evol. Biol. 13: 814–825

    Article  Google Scholar 

  27. Roze D., Rousset F. (2004). The robustness of Hamilton’s rule with inbreeding and dominance: Kin selection and fixation probabilities under partial sib mating. Am. Nat. 164: 214–231

    Article  Google Scholar 

  28. Sagitov S. (1999). The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab. 36: 1116–1125

    Article  MATH  MathSciNet  Google Scholar 

  29. Tavaré, S., Zeitouni, F.: Lectures on Probability Theory and Statistics, Ecole d’Été de Probabilités de Saint-Flour XXXI - 2001, Lecture Notes in Mathematics, Vol. 1837, Springer, New York (2004)

  30. Taylor C., Nowak M.A. (2006). Evolutionary game dynamics with non-uniform interaction rates. Theoret. Popul. Biol. 69: 243–252

    Article  MATH  Google Scholar 

  31. Wild G., Taylor P.D. (2004). Fitness and evolutionary stability in game theoretic models of finite populations. Proc. R. Soc. B 271: 2345–2349

    Article  Google Scholar 

  32. Wright S. (1931). Evolution in Mendelian populations. Genetics 16: 97–159

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabin Lessard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lessard, S., Ladret, V. The probability of fixation of a single mutant in an exchangeable selection model. J. Math. Biol. 54, 721–744 (2007). https://doi.org/10.1007/s00285-007-0069-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-007-0069-7

Keywords

Mathematics Subject Classification (2000)

Navigation