Skip to main content

Advertisement

Log in

React or wait: which optimal culling strategy to control infectious diseases in wildlife

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We applied optimal control theory to an SI epidemic model to identify optimal culling strategies for diseases management in wildlife. We focused on different forms of the objective function, including linear control, quadratic control, and control with limited amount of resources. Moreover, we identified optimal solutions under different assumptions on disease-free host dynamics, namely: self-regulating logistic growth, Malthusian growth, and the case of negligible demography. We showed that the correct characterization of the disease-free host growth is crucial for defining optimal disease control strategies. By analytical investigations of the model with negligible demography, we demonstrated that the optimal strategy for the linear control can be either to cull at the maximum rate at the very beginning of the epidemic (reactive culling) when the culling cost is low, or never to cull, when culling cost is high. On the other hand, in the cases of quadratic control or limited resources, we demonstrated that the optimal strategy is always reactive. Numerical analyses for hosts with logistic growth showed that, in the case of linear control, the optimal strategy is always reactive when culling cost is low. In contrast, if the culling cost is high, the optimal strategy is to delay control, i.e. not to cull at the onset of the epidemic. Finally, we showed that for diseases with the same basic reproduction number delayed control can be optimal for acute infections, i.e. characterized by high disease-induced mortality and fast dynamics, while reactive control can be optimal for chronic ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abakuks A (1973) An optimal isolation policy for an epidemic. J Appl Probab 10:247–262

    Article  MathSciNet  MATH  Google Scholar 

  • Abakuks A (1974) Optimal immunization policies for epidemics. Adv Appl Probab 6:494–511

    Article  MathSciNet  MATH  Google Scholar 

  • Ainseba B, Iannelli M (2012) Optimal screening in structured SIR epidemics. Math Model Nat Phenom 7:12–27

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson R, Jackson H, May R, Smith A (1981) Population dynamics of rabies in Europe. Nature 289: 765–771

    Google Scholar 

  • Anderson R, May R (1979) Population biology of infectious diseases: Part I. Nature 280:361–367

    Article  Google Scholar 

  • Asano E, Gross L, Lenhart S, Real L (2008) Optimal control of vaccine distribution in a rabies metapopulation model. Math Biosci Eng 5:219–238

    Article  MathSciNet  MATH  Google Scholar 

  • Barlow N (1996) The ecology of wildlife disease control: simple models revisited. J Appl Ecol 33:303–314

    Article  Google Scholar 

  • Beeton N, MacCallum H (2011) Models predict that culling is not a feasible strategy to prevent extinction of tasmanian devils from facial tumour disease. J Appl Ecol 48:1315–1323

    Article  Google Scholar 

  • Behncke H (2000) Optimal control of deterministic epidemics. Optim Control Appl Methods 21:269–285

    Article  MathSciNet  MATH  Google Scholar 

  • Bolzoni L, De Leo G (2007) A cost analysis of alternative culling strategies for the eradication of classical swine fever in wildlife. Environ Dev Econ 12:653–671

    Article  Google Scholar 

  • Bolzoni L, De Leo G (2013) Unexpected consequences of culling on the eradication of wildlife diseases: the role of virulence evolution. Am Nat 181:301–313

    Article  Google Scholar 

  • Bolzoni L, Real L, De Leo G (2007) Transmission heterogeneity and control strategies for infectious disease emergence. Plos ONE 2:e747

    Article  Google Scholar 

  • Bolzoni L, De Leo G, Gatto M, Dobson A (2008) Body-size scaling in an SEI model of wildlife diseases. Theoret Popul Biol 73:374–382

    Article  MATH  Google Scholar 

  • Bonds M (2006) Host life-history strategy explains pathogen-induced sterility. Am Nat 168:281–293

    Article  Google Scholar 

  • Bortins R, Boustany NM, Powers WF (1980) The infinite-order singular problem. Optim Control Appl Methods 1:279–302

    Article  MathSciNet  MATH  Google Scholar 

  • Choisy M, Rohani P (2006) Harvesting can increase severity of wildlife disease epidemics. Proc R Soc B 273:2025–2034

    Article  Google Scholar 

  • Clayton T, Duke-Sylvester S, Gross L, Lenhart S, Real L (2010) Optimal control of a rabies epidemic model with a birth pulse. J Biol Dyn 4:43–58

    Article  MathSciNet  Google Scholar 

  • Cleaveland S, Laurenson K, Mlengeya T (2005) Impacts of wildlife infections on human and livestock health with special reference to Tanzania: implications for protected area management. In: Osofsky S, Cleaveland S, Karesh W, Kock M, Nyhus P, Starr L, Yang A (eds) Conservation and development interventions at the wildlife/livestock interface: implications for wildlife, livestock and human health. IUCN, Gland, pp 147–151

    Google Scholar 

  • Coyne M, Smith G, McAllister F (1989) Mathematical model for the population biology of rabies in raccoons in the mid-atlantic states. Am J Vet Res 50:2148–2154

    Google Scholar 

  • Daszak P, Cunningham A, Hyatt A (2000) Emerging infectious diseases of wildlife–threats to biodiversity and human health. Science 287:443–449

    Article  Google Scholar 

  • de Pillis L, Gu W, Fister K, Head T, Maples K, Murugan A, Neal T, Yoshida K (2007) Chemotherapy for tumors: an analysis of the dynamics and a study of quadratic and linear optimal controls. Math Biosci 209:292–315

    Article  MathSciNet  MATH  Google Scholar 

  • DEFRA/DCMS (2002) Economic cost of foot and mouth disease in the UK. Tech. rep, Joint working paper of the Department for the Environment, Food and Rural Affairs and the Department of Culture, Media and Sport, UK

  • Dobson A, Meagher M (1996) The population dynamics of brucellosis in the Yellowstone national park. Ecology 77:1026–1036

    Article  Google Scholar 

  • Donaldson A (1997) Foot-and-mouth disease in Taiwan. Vet Rec 140:407

    Google Scholar 

  • Donnelly C, Woodroffe R, Cox D, Bourne J, Gettinby G, Le Fevre A, McInerney J, Morrison W (2003) Impact of localized badger culling on tuberculosis incidence in British cattle. Nature 426:834–837

    Article  Google Scholar 

  • Donnelly C, Woodroffe R, Cox D, Cheeseman C, Clifton-Hadley R, Wei G, Gettinby G, Gilks P, Jenkins H, Johnston W, Le Fevre A, McInerney J, Morrison W (2006) Positive and negative effects of widespread badger culling on tubercolosis in cattle. Nature 439:843–846

    Article  Google Scholar 

  • Fenichel E, Horan R (2007) Jointly-determined ecological thresholds and economic trade-offs in wildlife disease management. Nat Resour Model 20:511–547

    Article  MathSciNet  MATH  Google Scholar 

  • Ferguson N, Donnelly C, Anderson R (2001a) The foot-and-mouth epidemic in Great Britain: pattern of spread and impact of interventions. Science 292:1155–1160

    Article  Google Scholar 

  • Ferguson N, Donnelly C, Anderson R (2001b) Transmission intensity and impact of control policies on the foot and mouth epidemic in Great Britain. Nature 413:542–547

    Article  Google Scholar 

  • Fleming W, Rishel R (1975) Deterministic and stochastic optimal control. Springer, New York

    Book  MATH  Google Scholar 

  • Fonkwo P (2008) Pricing infectious disease. The economic and health implications of infectious diseases. EMBO Rep 8:S13–S17

    Article  Google Scholar 

  • Gaillard J, Festa-Bianchet M, Yoccoz N, Loison A, Toïgo C (2000) Temporal variation in fitness components and population dynamics of large herbivores. Annu Rev Ecol Evol Syst 31:367–393

    Article  Google Scholar 

  • Gibbens J, Sharpe C, Wilesmith J, Mansley L, Michalopoulou E, Ryan J, Hudson M (2001) Descriptive epidemiology of the 2001 foot-and-mouth disease epidemic in Great Britain: the first five months. Vet Rec 149:729–743

    Google Scholar 

  • Handel A, Longini I, Antia R (2007) What is the best control strategy for multiple infectious disease outbreaks. Proc R Soc B 274:833–837

    Article  Google Scholar 

  • Hansen E, Day T (2011a) Optimal antiviral treatment strategies and the effects of resistance. Proc R Soc B 278:1082–1089

    Article  Google Scholar 

  • Hansen E, Day T (2011b) Optimal control of epidemics with limited resources. J Math Biol 62:423–451

    Article  MathSciNet  MATH  Google Scholar 

  • Hofmann M, Thür B, Vanzetti T, Schleiss W, Schmidt J, Griot C (1999) Klassische schweinepest beim wildschwein in der schweiz. Schweizerisches Archiv für Tierheilkunde 141:185–190

    Google Scholar 

  • Horan R, Wolf C (2005) The economics of managing infectious wildlife disease. Am J Agric Econ 87: 537–551

    Google Scholar 

  • Horan R, Wolf C, Fenichel E, Mathews K (2005) Spatial management of wildlife disease. Rev Agric Econ 27:483–490

    Article  Google Scholar 

  • Howard J, Donnelly C (2000) The importance of immediate destruction in epidemics of foot and mouth disease. Res Vet Sci 69:189–196

    Article  Google Scholar 

  • Kaden V (1999) Bekämpfung der klassischen schweinepest beim schwarzwild. Zeitschrift für Jagdwissenschaften 45:45–59

    Google Scholar 

  • Keeling M, Woolhouse M, May R, Davies G, Grenfell B (2003) Modelling vaccination strategies against foot-and-mouth disease. Nature 421:136–142

    Article  Google Scholar 

  • Krener A (1977) The high order maximal principle and its application to singular extremals. SIAM J Control Optim 15:256–293

    Article  MathSciNet  MATH  Google Scholar 

  • Lachish S, McCallum H, Mann D, Pukk C, Jones M (2010) Evaluation of selective culling of infected individuals to control Tasmanian devil facial tumor disease. Conserv Biol 24:841–851

    Article  Google Scholar 

  • Laddomada A (2000) Incidence and control of CSF in wild boar in Europe. Vet Microbiol 73:121–130

    Article  Google Scholar 

  • Laddomada A, Patta C, Oggiano A, Caccia A, Ruiu A, Cossu P, Firinu A (1994) Epidemiology of classical swine fever in sardinia: a serological survey of wild boar and comparison with african swine fever. Vet Rec 134:183–187

    Article  Google Scholar 

  • Lee S, Chowell G, Chastillo-Chavez C (2010) Optimal control for pandemic influenza: the role of limited antiviral treatment and isolation. J Theoret Biol 265:136–150

    Article  MathSciNet  Google Scholar 

  • Lenhart S, Workman J (2007) Optimal control applied to biological models. CRC Mathematical and Computational Biology Series. Chapman & Hall, Boca Raton

    Google Scholar 

  • Lloyd-Smith J, Cross P, Briggs C, Daugherty M, Getz W, Latto J, Sanchez M, Smith A, Swei A (2005) Should we expect population thresholds for wildlife disease? Trends Ecol Evol 20:511–519

    Article  Google Scholar 

  • Maurer H (1977) On optimal control problems with bounded state variables and control appearing linearly. SIAM J Control Optim 15:345–362

    Article  MATH  Google Scholar 

  • McCallum H, Barlow N, Hone J (2001) How should pathogen transmission be modelled. Trends Ecol Evol 16:295–300

    Article  Google Scholar 

  • Meuwissen M, Horst H, Huirne R, Dijkhuizen A (1999) A model to estimate the financial consequences of classical swine fever outbreaks: principles and outcomes. Prevent Vet Med 42:249–270

    Article  Google Scholar 

  • Mollison D (1991) Dependence of epidemic and population velocities on basic parameters. Math Biosci 107:255–287

    Article  MATH  Google Scholar 

  • Morters M, Restif O, Hampson K, Cleaveland S, Woods J, Conlan A (2013) Evidence-based control of canine rabies: a critical review of population density reduction. J Anim Ecol 82:6–14

    Article  Google Scholar 

  • Morton R, Wickwire K (1974) On the optimal control of a deterministic epidemic. Adv Appl Probab 6:622–635

    Article  MathSciNet  MATH  Google Scholar 

  • Neilan R, Lenhart S (2011) Optimal vaccine distribution in a spatiotemporal epidemic model with an application to rabies and raccoons. J Math Anal Appl 378:603–619

    Article  MathSciNet  MATH  Google Scholar 

  • Okosun K, Ouifki R, Marcus N (2011) Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity. Biosystems 106:136–145

    Article  Google Scholar 

  • Pontryagin L, Boltyanskii V, Gamkrelidze R, Mishchenko E (1962) The mathematical theory of optimal processes. Interscience Publishers, Los Angeles

    MATH  Google Scholar 

  • Potapov A, Merrill E, Lewis M (2012) Wildlife disease elimination and density dependence. Proc R Soc B 279:3139–3145

    Article  Google Scholar 

  • Powers W (1980) On the order of singular optimal control problems. J Optim Theory Appl 32:479–489

    Article  MathSciNet  MATH  Google Scholar 

  • Rosatte R, Donovan D, Allan M, Howes LA, Silver A, Bennett K, MacInnes C, Davies C, Wandeler A, Radford B (2001) Emergency response to raccoon rabies introduction into Ontario. J Wildl Dis 37: 265–279

    Google Scholar 

  • Schnyder M, Stärk K, Vanzetti T, Salman M, Thor B, Schleiss W, Griot C (2002) Epidemiology and control of an outbreak of classical swine fever in wild boar in Switzerland. Vet Rec 150:102–109

    Article  Google Scholar 

  • Seierstad A, Sydsaeter K (1987) Optimal control theory with economic applications. North Holland, Amsterdam

  • Smith G, Bennett R, Wilkinson D, Cooke R (2007) A cost-benefit analysis of culling badgers to control bovine tubercolosis. Vet J 173:302–310

    Article  Google Scholar 

  • Smith G, Cheeseman C (2002) A mathematical model for the control of diseases in wildlife populations: culling, vaccination and fertility control. Ecol Modell 150:45–53

    Article  Google Scholar 

  • Volterra V (1927) Fluctuations in the abundance of a species considered mathematically. Nature 119:12–13

    Google Scholar 

  • Wickwire K (1975) Optimal isolation policies for deterministic and stochastic epidemics. Math Biosci 26:325–346

    Article  MathSciNet  MATH  Google Scholar 

  • Woodroffe R, Cleaveland S, Courtenay O, Laurenson M, Artois M (2004) Infectious disease in the management and conservation of wild canids. In: Macdonald D, Sillero-Zubiri C (eds) The biology and conservation of wild canids. Oxford University Press, Oxford, pp 124–142

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Bolzoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolzoni, L., Tessoni, V., Groppi, M. et al. React or wait: which optimal culling strategy to control infectious diseases in wildlife. J. Math. Biol. 69, 1001–1025 (2014). https://doi.org/10.1007/s00285-013-0726-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-013-0726-y

Keywords

Mathematics Subject Classification (2000)

Navigation