Skip to main content

Advertisement

Log in

Preparation and characterisation of a new double-sided bio-artificial material prepared by casting of poly(vinyl alcohol) on collagen

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A new double-sided bio-artificial polymer material prepared by casting of poly(vinyl alcohol) (PVA) on collagen (COLL) was obtained. The single components were blended with lactic acid and glutaraldehyde as plasticiser and crosslinker agents, respectively, to change and characterise structure of both the polymers. Differential scanning calorimetry, dynamic mechanical analysis, tensile test, tear resistance test, scratch test and Fourier transform infrared spectroscopy were chosen to characterise all the prepared materials. The results showed that the additives led to the decrease of glass transition temperature, melting temperature and crystallinity with respect to raw materials. The new bio-artificial material revealed tough behaviour with yield stress, with less by half tensile strength compared to neat materials and with the strain of PVA (>100 %). Both PVA and COLL blends and the new bio-artificial material exhibited viscoelastic features useful for being used in contact with living organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ikada Y, Tsuji H (2000) Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun 21:117–132. doi:10.1002/(SICI)1521-3927(20000201)21:3<117:AID-MARC117>3.0.CO;2-X

    Article  CAS  Google Scholar 

  2. Barbucci R (2002) Integrated biomaterials science. Springer, New York

    Book  Google Scholar 

  3. Wong JY, Bronzino JD (2007) Biomaterials. CRC Press, Boca Raton

    Book  Google Scholar 

  4. Friess W (1998) Collagen—biomaterial for drug delivery. Eur J Pharm Biopharm 45:113–136. doi:10.1016/S0939-6411(98)00017-4

    Article  CAS  Google Scholar 

  5. Lai G, Du Z, Li G (2007) The rheological behaviour of collagen dispersion/poly(vinyl alcohol) blends. Korea-Australia Rheology Journal 19:81–88

    Google Scholar 

  6. Silver F, Garg A (1997) Collagen: characterization, processing and medical applications. In: Domb A, Kost J, Wiserman D (eds) Handbook of biodegradable polymers. Part of the book series. Drug targeting and delivery, vol 4. Academic Publishers, Amsterdam, pp 319–346

    Google Scholar 

  7. Pourciel M, Launay J, Sant W, Conédéra V, Martinez A, Temple-Boyer P (2003) Development of photo-polymerisable polyvinyl alcohol for biotechnological applications. Sens Actuators B 94:330–336. doi:10.1016/S0925-4005(03)00463-5

    Article  Google Scholar 

  8. Sarti B, Scandola M (1995) Viscoelastic and thermal properties of collagen/poly(vinyl alcohol) blends. Biomaterials 16:785–792. doi:10.1016/0142-9612(95)99641-X

    Article  CAS  Google Scholar 

  9. Sionkowska A, Planecka A, Kozlowska J, Skopinska-Wisniewska J (2009) Collagen fibril formation in poly(vinyl alcohol) and poly(vinyl pyrrolidone) films. J Mol Liq 144:71–74. doi:10.1016/j.molliq.2008.09.007

    Article  CAS  Google Scholar 

  10. Sionkowska A (2003) Interaction of collagen and poly(vinyl pyrrolidone) in blends. Eur Polym J 39:2135–2140. doi:10.1016/S0014-3057(03)00161-7

    Article  CAS  Google Scholar 

  11. Alexy P, Bakos D, Hanzelova S, Kukolikova L, Kupec J, Charvatova P, Chiellini E, Cinelli P (2003) Poly(vinyl alcohol) collagen hydrolysate thermoplastic blends: I. Experimental design optimisation and biodegradation behaviour. Polym Test 22:801–809. doi:10.1016/S0142-9418(03)00016-3

    Article  CAS  Google Scholar 

  12. Sionkowska A, Wisniewsky M, Kaczmarek H, Skopinska J, Chevallier P, Mantovani D, Lazare S, Tokarev V (2006) The influence of UV irradiation on surface composition of collagen/PVP blended films. Appl Surf Sci 253:1970–1977. doi:10.1016/j.apsusc.2006.03.048

    Article  CAS  Google Scholar 

  13. Sionkowska A, Kaczmarek H, Wisniewski M, Kowalonek J, Skopinska J (2004) Surface characteristics of UV-irradiated collagen/PVP blended films. Surface Science 566–568 Part 1:608–612. doi:10.1016/j.susc.2004.05.114

  14. Sionkowska A, Kozlowska J, Planecka A, Skopinska-Wisniewska J (2008) Collagen fibrils in UV irradiated poly(vinyl pyrrolidone) films. Appl Surf Sci 255:2030–2039. doi:10.1016/j.apsusc.2008.06.200

    Article  CAS  Google Scholar 

  15. Sionkowska A, Kozlowska J, Planecka A, Skopinska-Wisniewska J (2008) Photochemical stability of poly(vinyl pyrrolidone) in the presence of collagen. Polym Degrad Stab 93:2127–2132. doi: 10.1016/j.polymdegradstab.2008.08.010

    Google Scholar 

  16. Alexy P, Bakos D, Crkonova G, Kramarova Z, Hoffman J, Julinova M, Chiellini E, Cinelli P (2003) Poly(vinyl alcohol) collagen hydrolysate thermoplastic blends: II. Water penetration and biodegradability of melt extruded films. Polym Test 22:811–818. doi:10.1016/S0142-9418(03)00015-1

    Article  CAS  Google Scholar 

  17. Alexi P, Bakos D, Crkonova G, Kolomaznik K, Krsiak M (2001) Blends of polyvinyl alcohol with collagen hydrolysate: thermal degradation and processing properties. Macromol Symp 170:41–49. doi:10.1002/1521-3900(200106)170:1<41:AID-MASY41>3.0.CO;2-B

    Article  Google Scholar 

  18. Scotchford CA, Cascone MG, Downes S, Guisti P (1998) Osteoblast response to collagen–PVA bioartificial polymers in vitro: the effects of crosslinking method and collagen content. Biomaterials 19:1–11. doi:10.1016/S0142-9612(97)00236-6

    Article  CAS  Google Scholar 

  19. Fambri L, Migliaresi C, Kesenci K, Piskin E (2002) Biodegradables polymers. In: Barbucci R (ed) Integrated biomaterial science. Kluwer Academic Publishers, New York, pp 119–187

    Chapter  Google Scholar 

  20. Cascone M (1997) Dynamic–mechanical properties of bioartificial polymeric materials. Polym Int 43:55–69. doi:10.1002/(SICI)1097-0126(199705)43:1<55:AID-PI762>3.0.CO;2-#

    Article  CAS  Google Scholar 

  21. Mano V, Ribeiro E, Silva M (2007) Bioartificial polymeric materials based on collagen and poly(N-isopropylacrylamide). Mater Res 10:165–170. doi:10.1590/S1516-14392007000200012

    CAS  Google Scholar 

  22. Sperling LH (2006) Introduction to physical polymer science. Wiley, Hoboken, NJ, USA

  23. Kadler K, Holmes D, Trotter J, Chapman J (1996) Review article. Collagen fibril formation. Biochem J 316:1–11

    CAS  Google Scholar 

  24. Cervantes C, Olaya E, Testas M, Garcia-Lopez N, Coste G, Arrellin G, Luna A, Krotzsch E (2003) Collagen–PVP, a collagen synthesis modulator, decreases intraperitoneal adhesions. J Surg Res 110:207–210. doi:10.1016/S0022-4804(02)00099-9

    Article  Google Scholar 

  25. Prikryl R, Salyk O, Kripal L, Cech V (2002) New scratch tester developed for plasma polymer characterization. Czechoslov J Phys 52:D824–D828

    Google Scholar 

  26. Sedlarik V, Saha N, Kuritka I, Saha P (2006) Preparation and characterization of poly(vinyl alcohol)/lactic acid compounded polymeric films. Int J Polym Anal Charact 11:253–270. doi:10.1080/10236660600750190

    Article  CAS  Google Scholar 

  27. Park JS, Park JW, Ruckenstein E (2001) On the viscoelastic properties of poly(vinyl alcohol) and chemically crosslinked poly(vinyl alcohol). J Appl Polym Sci 82:1816–1823. doi:10.1002/app.2023

    Article  CAS  Google Scholar 

  28. Yeom ChK, Lee KH (1996) Pervaporation separation of water–acetic acid mixtures through poly(vinyl alcohol) membranes crosslinked with glutaraldehyde. J Membr Sci 109:257–265. doi:10.1016/0376-7388(95)00196-4

    Article  CAS  Google Scholar 

  29. Holt B, Tripathi A, Morgan J (2008) Viscoelastic response of human skin to low magnitude physiologically relevant shear. J Biomech 41:2689–2695. doi:10.1016/j.jbiomech.2008.06.008

    Article  Google Scholar 

  30. Collard JM, Romagnoli R (2001) Human stomach has a recordable mechanical activity at a rate of about three cycles/minute. Eur J Surg 167:188–194. doi:10.1080/110241501750099357

    Article  CAS  Google Scholar 

  31. Menard K (1999) Dynamic mechanical analysis: a practical introduction. CRC Press, Boca Raton, FL, USA

Download references

Acknowledgments

This article was written with support of Operational Program Research and Development for Innovations co-funded by the European Regional Development Fund (ERDF) and national budget of Czech Republic, within the framework of project Centre of Polymer Systems (Reg. No: CZ.1.05/2.1.00/03.0111). The study was supported by the grant project of the Ministry of Education, Youth and Sports of the Czech Republic (Reg. No: MSM 7088352101), by the Internal Grant Agency IGA/1/FT/10/D, by Thomas Bata Foundation, fund NIF 2009 and the Grant MSM0021630501 from the Czech Ministry of Education, Youth and Sports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres Bernal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernal, A., Balkova, R., Kuritka, I. et al. Preparation and characterisation of a new double-sided bio-artificial material prepared by casting of poly(vinyl alcohol) on collagen. Polym. Bull. 70, 431–453 (2013). https://doi.org/10.1007/s00289-012-0802-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-012-0802-2

Keywords

Navigation