Skip to main content
Log in

Quaternised chitosan in conjunction with ultrafiltration membranes to remove arsenate and chromate ions

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A sample of N,N,N-trimethylchitosan chloride (TMC) was prepared and its ability to remove arsenate and chromate from an aqueous solution was evaluated. The removal capacity was quantified by a liquid-phase polymer-based retention system. A washing method was used to determine the effect of pH, molar ratio, contact time, and interfering ions on the removal of the anions. The results showed that TMC exhibits a high affinity for the divalent species HAsO4 2− and CrO4 2− because the majority of the retention capacity occurred at pH values between 6 and 10. A removal maximum was found for experiments with a 10:1 molar ratio and pH 8.0, achieving a 73.0 % removal of As(V) and a 94.0 % removal of Cr(VI). The evaluation of the effect of the contact time of the polymer–SR (species to remove) solution prior to diafiltration revealed that the interaction between TMC and the anions is produced rapidly. Furthermore, TMC selectivity in the presence of interfering ions, such as chloride and sulphate, and maximum retention capacity were evaluated. Finally, permeate flux behaviour was briefly discussed under different conditions of removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chatterjee S, Adhya M, Guha AK, Chatterjee BP (2005) Chitosan from Mucor rouxii: production and physico-chemical characterization. Process Biochem 40(1):395–400. doi:10.1016/j.procbio.2004.01.025

    Article  CAS  Google Scholar 

  2. Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34(7):641–678. doi:10.1016/j.progpolymsci.2009.04.001

    Article  CAS  Google Scholar 

  3. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632. doi:10.1016/j.progpolymsci.2006.06.001

    Article  CAS  Google Scholar 

  4. Crini G, Morin-Crini N, Fatin-Rouge N, Déon S, Fievet P (2014) Metal removal from aqueous media by polymer-assisted ultrafiltration with chitosan. Arab J Chem. doi:10.1016/j.arabjc.2014.05.020

    Google Scholar 

  5. Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38(1):43–74. doi:10.1016/j.seppur.2003.10.004

    Article  CAS  Google Scholar 

  6. Pontoni L, Fabbricino M (2012) Use of chitosan and chitosan-derivatives to remove arsenic from aqueous solutions—a mini review. Carbohydr Res 356:86–92. doi:10.1016/j.carres.2012.03.042

    Article  CAS  Google Scholar 

  7. Guibal E, Milot C, Tobin JM (1998) Metal-anion sorption by chitosan beads: equilibrium and kinetic studies. Ind Eng Chem Res 37(4):1454–1463. doi:10.1021/ie9703954

    Article  Google Scholar 

  8. WHO (2006) Guidelines for drinking-water quality. World Health Organization, Singapore

    Google Scholar 

  9. Aroua MK, Zuki FM, Sulaiman NM (2007) Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration. J Hazard Mater 147(3):752–758. doi:10.1016/j.jhazmat.2007.01.120

    Article  CAS  Google Scholar 

  10. Gérente C, Andrès Y, McKay G, Le Cloirec P (2010) Removal of arsenic(V) onto chitosan: from sorption mechanism explanation to dynamic water treatment process. Chem Eng J 158(3):593–598. doi:10.1016/j.cej.2010.02.005

    Article  Google Scholar 

  11. Kwok KCM, Lee VKC, Gerente C, McKay G (2009) Novel model development for sorption of arsenate on chitosan. Chem Eng J 151(1–3):122–133. doi:10.1016/j.cej.2009.02.004

    Article  CAS  Google Scholar 

  12. Bhatnagar A, Sillanpää M (2009) Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater—a short review. Adv Colloid Interface Sci 152(1–2):26–38. doi:10.1016/j.cis.2009.09.003

    Article  CAS  Google Scholar 

  13. Dambies L, Vincent T, Guibal E (2002) Treatment of arsenic-containing solutions using chitosan derivatives: uptake mechanism and sorption performances. Water Res 36(15):3699–3710. doi:10.1016/S0043-1354(02)00108-2

    Article  CAS  Google Scholar 

  14. Kyzas GZ, Kostoglou M, Lazaridis NK (2009) Copper and chromium(VI) removal by chitosan derivatives—equilibrium and kinetic studies. Chem Eng J 152(2–3):440–448. doi:10.1016/j.cej.2009.05.005

    Article  CAS  Google Scholar 

  15. Wan Ngah WS, Teong LC, Hanafiah MAKM (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83(4):1446–1456. doi:10.1016/j.carbpol.2010.11.004

    Article  CAS  Google Scholar 

  16. Belalia R, Grelier S, Benaissa M, Coma V (2008) New bioactive biomaterials based on quaternized chitosan. J Agric Food Chem 56(5):1582–1588. doi:10.1021/jf071717+

    Article  CAS  Google Scholar 

  17. Xu T, Xin M, Li M, Huang H, Zhou S (2010) Synthesis, characteristic and antibacterial activity of N, N, N-trimethyl chitosan and its carboxymethyl derivatives. Carbohydr Polym 81(4):931–936. doi:10.1016/j.carbpol.2010.04.008

    Article  CAS  Google Scholar 

  18. Polnok A, Borchard G, Verhoef JC, Sarisuta N, Junginger HE (2004) Influence of methylation process on the degree of quaternization of N-trimethyl chitosan chloride. Eur J Pharm Biopharm 57(1):77–83. doi:10.1016/S0939-6411(03)00151-6

    Article  CAS  Google Scholar 

  19. Pl Dung, Milas M, Rinaudo M, Desbrières J (1994) Water soluble derivatives obtained by controlled chemical modifications of chitosan. Carbohydr Polym 24(3):209–214. doi:10.1016/0144-8617(94)90132-5

    Article  Google Scholar 

  20. Curti E, de Britto D, Campana-Filho SP (2003) Methylation of chitosan with iodomethane: effect of reaction conditions on chemoselectivity and degree of substitution. Macromol Biosci 3(10):571–576. doi:10.1002/mabi.200300030

    Article  CAS  Google Scholar 

  21. Di Colo G, Burgalassi S, Zambito Y, Monti D, Chetoni P (2004) Effects of different N-trimethyl chitosans on in vitro/in vivo ofloxacin transcorneal permeation. J Pharm Sci 93(11):2851–2862. doi:10.1002/jps.20197

    Article  Google Scholar 

  22. Jintapattanakit A, Mao S, Kissel T, Junyaprasert VB (2008) Physicochemical properties and biocompatibility of N-trimethyl chitosan: effect of quaternization and dimethylation. Eur J Pharm Biopharm 70(2):563–571. doi:10.1016/j.ejpb.2008.06.002

    Article  CAS  Google Scholar 

  23. Muzzarelli RAA, Tanfani F (1985) The N-permethylation of chitosan and the preparation of N-trimethyl chitosan iodide. Carbohydr Polym 5(4):297–307. doi:10.1016/0144-8617(85)90037-2

    Article  CAS  Google Scholar 

  24. Rivas BL, Pereira ED, Palencia M, Sánchez J (2011) Water-soluble functional polymers in conjunction with membranes to remove pollutant ions from aqueous solutions. Prog Polym Sci 36(2):294–322. doi:10.1016/j.progpolymsci.2010.11.001

    Article  CAS  Google Scholar 

  25. Geckeler KE, Bayer E, Shkinev VM, Spivakov BY (1988) A new method for anion exchange using soluble polymers. Naturwissenschaften 75(4):198–199. doi:10.1007/BF00735579

    Article  CAS  Google Scholar 

  26. Geckeler KE, Volchek K (1996) Removal of hazardous substances from water using ultrafiltration in conjunction with soluble polymers. Environ Sci Technol 30(3):725–734. doi:10.1021/es950326l

    Article  CAS  Google Scholar 

  27. Sánchez J, Rivas BL (2011) Arsenate retention from aqueous solution by hydrophilic polymers through ultrafiltration membranes. Desalination 270(1–3):57–63. doi:10.1016/j.desal.2010.11.021

    Article  Google Scholar 

  28. Sánchez J, Rivas BL (2011) Cationic hydrophilic polymers coupled to ultrafiltration membranes to remove chromium (VI) from aqueous solution. Desalination 279(1–3):338–343. doi:10.1016/j.desal.2011.06.029

    Article  Google Scholar 

  29. Sieval AB, Thanou M, Kotze´ AF, Verhoef JC, Brussee J, Junginger HE (1998) Preparation and NMR characterization of highly substituted N-trimethyl chitosan chloride. Carbohydr Polym 36(2–3):157–165. doi:10.1016/S0144-8617(98)00009-5

    Article  CAS  Google Scholar 

  30. Snyman D, Hamman JH, Kotze JS, Rollings JE, Kotzé AF (2002) The relationship between the absolute molecular weight and the degree of quaternisation of N-trimethyl chitosan chloride. Carbohydr Polym 50(2):145–150. doi:10.1016/S0144-8617(02)00008-5

    Article  CAS  Google Scholar 

  31. Muslehiddinoglu J, Uludag Y, Ozbelge HO, Yilmaz L (1998) Effect of operating parameters on selective separation of heavy metals from binary mixtures via polymer enhanced ultrafiltration. J Membr Sci 140(2):251–266

    Article  CAS  Google Scholar 

  32. Oosawa F (1971) Polyelectrolytes. Marcel Dekker Inc, New York

    Google Scholar 

  33. Cornejo L, Lienqueo H, Arenas M, Acarapi J, Contreras D, Yáñez J, Mansilla HD (2008) In field arsenic removal from natural water by zero-valent iron assisted by solar radiation. Environ Pollut 156(3):827–831. doi:10.1016/j.envpol.2008.05.022

    Article  CAS  Google Scholar 

  34. Cañizares P, Lucas Ad, Pérez Á, Camarillo R (2005) Effect of polymer nature and hydrodynamic conditions on a process of polymer enhanced ultrafiltration. J Membr Sci 253(1–2):149–163. doi:10.1016/j.memsci.2004.12.042

    Article  Google Scholar 

  35. Uludag Y, Özbelge HÖ, Yilmaz L (1997) Removal of mercury from aqueous solutions via polymer-enhanced ultrafiltration. J Membr Sci 129(1):93–99. doi:10.1016/S0376-7388(96)00342-0

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors extend thanks to FONDECYT (Grant No 1110079), PIA (Anillo ACT 130), and REDOC (MINEDUC Project UCO1202 at U. de Concepción).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernabé L. Rivas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toledo, L., Rivas, B.L. Quaternised chitosan in conjunction with ultrafiltration membranes to remove arsenate and chromate ions. Polym. Bull. 72, 1365–1377 (2015). https://doi.org/10.1007/s00289-015-1341-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1341-4

Keywords

Navigation