Skip to main content
Log in

In vitro bulk/surface erosion pattern of PLGA implant in physiological conditions: a study based on auxiliary microsphere systems

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This work investigates the degradation of PLGA implants in an aqueous medium maintained at physiological pH ≈ 7.4. Two limiting systems are also investigated, which involve the degradation of PLGA microspheres in two different media characterized by: (i) a non-regulated pH, for emulating the autocatalyzed degradation in the implant core; and (ii) a regulated physiological pH, for emulating the uncatalyzed degradation at the implant surface. The degradation experiments were carried out along 40–50 days, and samples withdrawn during this period were characterized by gravimetry, electronic microscopy, and size exclusion chromatography. Experimental results suggest that PLGA implants are degraded according to a time-variant spatial pattern, which depends on the pH of the surrounding medium. Initially, the implants suffered a typically bulk erosion process, governed by the acidification of the implant core; and after breakage of the implant wall, the regulated physiological pH induces a surface erosion process. The two auxiliary microsphere-based experiments were useful to elucidate the degradation phenomena occurring in the PLGA implants. The evolution of the mass loss and the weight-average molecular weight along the degradation can be successfully predicted by simple mathematical models based on first-order kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rajeev AJ (2000) The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21(23):2475–2490. doi:10.1016/s0142-9612(00)00115-0

    Article  Google Scholar 

  2. Fredenberg S, Wahlgren M, Reslow M, Axelsson A (2011) The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems—a review. Int J Pharm 415(1–2):34–52. doi:10.1016/j.ijpharm.2011.05.049

    Article  CAS  Google Scholar 

  3. Hatefi A, Amsden B (2002) Biodegradable injectable in situ forming drug delivery systems. J Control Release 80(1–3):9–28. doi:10.1016/s0168-3659(02)00008-1

    Article  CAS  Google Scholar 

  4. Packhaeuser CB, Schnieders J, Oster CG, Kissel T (2004) In situ forming parenteral drug delivery systems: an overview. Eur J Pharm Biopharm 58(2):445–455. doi:10.1016/j.ejpb.2004.03.003

    Article  CAS  Google Scholar 

  5. Jain GK, Pathan SA, Akhter S, Ahmad N, Jain N, Talegaonkar S, Khar RK, Ahmad FJ (2010) Mechanistic study of hydrolytic erosion and drug release behaviour of PLGA nanoparticles: influence of chitosan. Polym Degrad Stabil 95(12):2360–2366. doi:10.1016/j.polymdegradstab.2010.08.015

    Article  CAS  Google Scholar 

  6. Göpferich A (1997) Mechanisms of polymer degradation and elimination. In: Domb AJ, Kost J, Wiseman DM (eds) Handbook of biodegradable polymers. Harwood Academic Publishers, Amsterdam, pp 451–471

    Google Scholar 

  7. Göpferich A (1996) Mechanisms of polymer degradation and erosion. Biomaterials 17(2):103–114. doi:10.1016/0142-9612(96)85755-3

    Article  Google Scholar 

  8. Li SM, Garreau H, Vert M (1990) Structure-property relationships in the case of the degradation of massive aliphatic poly-(α-hydroxy acids) in aqueous media. J Mater Sci Mater Med 1(3):123–130. doi:10.1007/bf00700871

    Article  CAS  Google Scholar 

  9. Tamada JA, Langer R (1993) Erosion kinetics of hydrolytically degradable polymers. Proc Natl Acad Sci 90(2):552–556

    Article  CAS  Google Scholar 

  10. Yoshioka T, Kawazoe N, Tateishi T, Chen G (2008) In vitro evaluation of biodegradation of poly(lactic-co-glycolic acid) sponges. Biomaterials 29(24–25):3438–3443. doi:10.1016/j.biomaterials.2008.04.011

    Article  CAS  Google Scholar 

  11. Grizzi I, Garreau H, Li S, Vert M (1995) Hydrolytic degradation of devices based on poly(dl-lactic acid) size-dependence. Biomaterials 16(4):305–311

    Article  CAS  Google Scholar 

  12. Chen Y, Zhou S, Li Q (2011) Mathematical modeling of degradation for bulk-erosive polymers: applications in tissue engineering scaffolds and drug delivery systems. Acta Biomater 7(3):1140–1149

    Article  CAS  Google Scholar 

  13. Krebs MD, Sutter KA, Lin ASP, Guldberg RE, Alsberg E (2009) Injectable poly(lactic-co-glycolic) acid scaffolds with in situ pore formation for tissue engineering. Acta Biomater 5(8):2847–2859. doi:10.1016/j.actbio.2009.04.035

    Article  CAS  Google Scholar 

  14. Dånmark S, Finne-Wistrand A, Schander K, Hakkarainen M, Arvidson K, Mustafa K, Albertsson AC (2011) In vitro and in vivo degradation profile of aliphatic polyesters subjected to electron beam sterilization. Acta Biomater 7(5):2035–2046. doi:10.1016/j.actbio.2011.02.011

    Article  Google Scholar 

  15. Körber M (2010) PLGA erosion: solubility- or diffusion-controlled? Pharm Res 27(11):2414–2420

    Article  Google Scholar 

  16. Schliecker G, Schmidt C, Fuchs S, Wombacher R, Kissel T (2003) Hydrolytic degradation of poly(lactide-co-glycolide) films: effect of oligomers on degradation rate and crystallinity. Int J Pharm 266(1–2):39–49. doi:10.1016/s0378-5173(03)00379-x

    Article  CAS  Google Scholar 

  17. Wang L, Venkatraman S, Kleiner L (2004) Drug release from injectable depots: two different in vitro mechanisms. J Control Release 99(2):207–216. doi:10.1016/j.jconrel.2004.06.021

    Article  CAS  Google Scholar 

  18. Graham PD, Brodbeck KJ, McHugh AJ (1999) Phase inversion dynamics of PLGA solutions related to drug delivery. J Control Release 58(2):233–245

    Article  CAS  Google Scholar 

  19. Dunn RL, English, James P, Cowsar, Donald R, Vanderbilt, David P (1990) Biodegradable in situ forming implants and methods of producing the same. US Patent Patent 5990194

  20. Sah H (1997) Microencapsulation techniques using ethyl acetate as a dispersed solvent: effects of its extraction rate on the characteristics of PLGA microspheres. J Control Release 47(3):233–245. doi:10.1016/S0168-3659(97)01647-7

    Article  CAS  Google Scholar 

  21. Mohd-Adnan A-F, Nishida H, Shirai Y (2008) Evaluation of kinetics parameters for poly(l-lactic acid) hydrolysis under high-pressure steam. Polym Degrad Stabil 93(6):1053–1058. doi:10.1016/j.polymdegradstab.2008.03.022

    Article  CAS  Google Scholar 

  22. Sadao Mori HGB (1999) Size exclusion chromatography. In: Springer Laboratory, Springer Lab Manuals Series, Laboratory Series, 1st edn. Springer, Germany

  23. Meira GR, Vega JR, Yossen MM (2004) Gel permeation and size exclusion chromatography. In: Cazes J (ed) Ewing’s analytical instrumentation handbook, 3rd edn. Marcel Dekker Inc., New York, pp 827–869

    Google Scholar 

  24. Kenley RA, Lee MO, Mahoney TR, Sanders LM (1987) Poly(lactide-co-glycolide) decomposition kinetics in vivo and in vitro. Macromolecules 20(10):2398–2403

    Article  CAS  Google Scholar 

  25. Chiu LK, Chiu WJ, Cheng YL (1995) Effects of polymer degradation on drug released-mechanistic study of morphology and transport properties in 50:50 poly(dl-lactide-co-glycolide). Int J Pharm 126(1–2):169–178

    Article  CAS  Google Scholar 

  26. Göpferich A (1997) Polymer bulk erosion. Macromolecules 30(9):2598–2604

    Article  Google Scholar 

  27. Vey E, Rodger C, Booth J, Claybourn M, Miller AF, Saiani A (2011) Degradation kinetics of poly(lactic-co-glycolic) acid block copolymer cast films in phosphate buffer solution as revealed by infrared and Raman spectroscopies. Polym Degrad Stabil 96(10):1882–1889. doi:10.1016/j.polymdegradstab.2011.07.011

    Article  CAS  Google Scholar 

  28. Mobedi H, Nekoomanesh M, Orafaei H, Mivehchi H (2006) Studying the degradation of poly(l-lactide) in presence of magnesium hydroxide. Iran Polym J 15(1):31–39

    CAS  Google Scholar 

  29. Zolnik BS, Burgess DJ (2007) Effect of acidic pH on PLGA microsphere degradation and release. J Control Release 122(3):338–344. doi:10.1016/j.jconrel.2007.05.034

    Article  CAS  Google Scholar 

  30. Park TG (1994) Degradation of poly(d, l-lactic acid) microspheres: effect of molecular weight. J Control Release 30(2):161–173. doi:10.1016/0168-3659(94)90263-1

    Article  CAS  Google Scholar 

  31. Dong WY, Körber M, López Esguerra V, Bodmeier R (2006) Stability of poly(d, l-lactide-co-glycolide) and leuprolide acetate in in situ forming drug delivery systems. J Control Release 115(2):158–167. doi:10.1016/j.jconrel.2006.07.013

    Article  CAS  Google Scholar 

  32. Gasparini G, Holdich RG, Kosvintsev SR (2010) PLGA particle production for water-soluble drug encapsulation: degradation and release behaviour. Colloid Surf B 75(2):557–564

    Article  CAS  Google Scholar 

  33. Blasi P, D’Souza SS, Selmin F, DeLuca PP (2005) Plasticizing effect of water on poly(lactide-co-glycolide). J Control Release 108(1):1–9

    Article  CAS  Google Scholar 

  34. Yoo JY, Kim JM, Seo KS, Jeong YK, Lee HB, Khang G (2005) Characterization of degradation behavior for PLGA in various pH condition by simple liquid chromatography method. Biomed Mater Eng 15(4):279–288

    CAS  Google Scholar 

  35. Lam CXF, Savalani MM, Teoh S-H, Hutmacher DW (2008) Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions. Biomed Mater 3(3):034108

    Article  Google Scholar 

Download references

Acknowledgments

In memory of Dr. Ricardo J.A. Grau and Dra. María Inés Cabrera, who passed away while this paper was in preparation. The authors are grateful for the financial support received from the following Argentine institutions: Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and Universidad Nacional del Litoral (UNL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Boimvaser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boimvaser, S., Mariano, R.N., Turino, L.N. et al. In vitro bulk/surface erosion pattern of PLGA implant in physiological conditions: a study based on auxiliary microsphere systems. Polym. Bull. 73, 209–227 (2016). https://doi.org/10.1007/s00289-015-1481-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1481-6

Keywords

Navigation