Skip to main content
Log in

Nano-structure, phase transition and morphology of gallic acid and xyloglucan hydrogel

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The effect of adding GA to 1 % (w/v) TSX on the phase transitions was detected by tube inversion and optical changes. The size of the aggregated domains and the morphology of the GA/TSX blends in the gel states were investigated using SAXS and an optical microscope, respectively, at 25 °C. Turbidity and tube inversion determinations showed that 1TSX, 0.2GA/1TSX and 0.4GA/1TSX could not form a gel but the blends of 0.6GA/1TSX, 0.8GA/1TSX and 1GA/1TSX formed turbid gels and exhibited a thermoreversible phase transformation. Upon heating, the gel-to-sol temperatures were between 42 and 52 °C and increased with an increase of the GA concentration. Upon cooling, the sol-to-gel temperatures were between 26 and 36 °C with the lower temperatures for the lower concentrations of GA in the blends. According to SAXS analyses, molecular aggregation appeared in the blends that exhibited the gelling ability with an aggregation domain of 2.2–2.9 nm. The size of the aggregation domain increased as the GA concentration increased. Fibrillation was observed for the gels of 0.6GA/1TSX, 0.8GA/1TSX and 1GA/1TSX from the optical micrographs. Furthermore, the blends of GA/TSX caused synergistic antioxidant activity as determined by a reduction of the DPPH radicals. In addition, these GA/TSX gels exhibited a sustained release of GA by a non-Fickian mechanism. These gels may have a potential use for the topical delivery of GA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bajpai AK, Shukla SK, Bhanu S, Kankane S (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci 33:1088–1118

    Article  CAS  Google Scholar 

  2. Boustta M, Colombo P-E, Lenglet S, Poujol S, Vert M (2014) Versatile UCST-based thermoresponsive hydrogels for loco-regional sustained drug delivery. J Control Release 174:1–6

    Article  CAS  Google Scholar 

  3. Wang Q, Li S, Wang Z, Liu H, Li C (2009) Preparation and characterization of a positive thermoresponsive hydrogel for drug loading and release. J Appl Polym Sci 111:1417–1425

    Article  CAS  Google Scholar 

  4. Saxena A, Kaloti M, Bohidar HB (2011) Rheological properties of binary and ternary protein–polysaccharide co-hydrogels and comparative release kinetics of salbutamol sulphate from their matrices. Int J Biol Macromol 48:263–270

    Article  CAS  Google Scholar 

  5. Rawat K, Aswal VK, Bohidar HB (2012) DNA–gelatin complex coacervation, UCST and first-order phase transition of coacervate to anisotropic ion gel in 1-methyl-3-octylimidazolium chloride ionic liquid solutions. J Phys Chem B 116:14805–14816

    Article  CAS  Google Scholar 

  6. Di Y, Ma X, Li C, Liu H, Fan X, Wang M et al (2014) A new thermosensitive poly(N-propionyl-aspartic acid/ethylene glycol) with no cytotoxicity and tunable UCST. Macromol Chem Physic 215:365–371

    Article  CAS  Google Scholar 

  7. Tuvikene R, Truus K, Kollist A, Volobujeva O, Mellikov E, Pehk T (2008) Gel-forming structures and stages of red algal galactans of different sulfation levels. J Appl Phycol 20:527–535

    Article  CAS  Google Scholar 

  8. Persin Z, Stana-Kleinschek K, Foster TJ, van Dam JEG, Boeriu CG, Navard P (2011) Challenges and opportunities in polysaccharides research and technology: the EPNOE views for the next decade in the areas of materials, food and health care. Carbohydr Polym 84:22–32

    Article  CAS  Google Scholar 

  9. Nandi LG, Guerra JPTA, Bellettini IC, Machado VG, Minatti E (2013) Properties of aqueous solutions of lentinan in the absence and presence of zwitterionic surfactants. Carbohydr Polym 98:1–7

    Article  CAS  Google Scholar 

  10. Yamashita Y, Yanagisawa M, Tokita M (2014) Sol–gel transition and phase separation in ternary system of gelatin–water–poly(ethylene glycol) oligomer. J Mol Liq 200:47–51

  11. Chivero P, Gohtani S, Ikeda S, Nakamura A (2014) The structure of soy soluble polysaccharide in aqueous solution. Food Hydrocolloids 35:279–286

    Article  CAS  Google Scholar 

  12. Kara S, Arda E, Pekcan Ö (2005) Molecular recognition during sol–gel and gel–sol transition of kappa–iota carrageenan mixtures. Phase Transit 78:915–926

    Article  CAS  Google Scholar 

  13. Hirun N, Rugmai S, Sangfai T, Tantishaiyakul V (2012) SAXS and ATR-FTIR studies on EBT–TSX mixtures in their sol–gel phases. Int J Biol Macromol 51:423–430

    Article  CAS  Google Scholar 

  14. Xu Y, Li L (2005) Thermoreversible and salt-sensitive turbidity of methylcellulose in aqueous solution. Polymer 46:7410–7417

    Article  CAS  Google Scholar 

  15. Khutoryanskiy VV, Nurkeeva ZS, Mun GA, Dubolazov AV (2004) Effect of temperature on aggregation/dissociation behavior of interpolymer complexes stabilized by hydrogen bonds. J Appl Polym Sci 93:1946–1950

    Article  CAS  Google Scholar 

  16. Dai H, Chen Q, Qin H, Guan Y, Shen D, Hua Y et al (2006) A temperature-responsive copolymer hydrogel in controlled drug delivery. Macromolecules 39:6584–6589

    Article  CAS  Google Scholar 

  17. Agulhon P, Robitzer M, David L, Quignard F (2012) Structural regime identification in ionotropic alginate gels: influence of the cation nature and alginate structure. Biomacromolecules 13:215–220

    Article  CAS  Google Scholar 

  18. Moschakis T, Lazaridou A, Biliaderis CG (2012) Using particle tracking to probe the local dynamics of barley β-glucan solutions upon gelation. J Colloid Interface Sci 375:50–59

    Article  CAS  Google Scholar 

  19. Casettari L, Cespi M, Palmieri GF, Bonacucina G (2013) Characterization of the interaction between chitosan and inorganic sodium phosphates by means of rheological and optical microscopy studies. Carbohydr Polym 91:597–602

    Article  CAS  Google Scholar 

  20. Inoue M, Suzuki R, Koide T, Sakaguchi N, Ogihara Y, Yabu Y (1994) Antioxidant, gallic acid, induces apoptosis in HL-60RG cells. Biochem Bioph Res Commun 204:898–904

    Article  CAS  Google Scholar 

  21. Ji BC, Hsu WH, Yang JS, Hsia TC, Lu CC, Chiang JH et al (2009) Gallic acid induces apoptosis via caspase-3 and mitochondrion-dependent pathways in vitro and suppresses lung xenograft tumor growth in vivo. J Agric Food Chem 57:7596–7604

    Article  CAS  Google Scholar 

  22. Priscilla DH, Prince PSM (2009) Cardioprotective effect of gallic acid on cardiac troponin-T, cardiac marker enzymes, lipid peroxidation products and antioxidants in experimentally induced myocardial infarction in Wistar rats. Chem Biol Interact 179:118–124

    Article  CAS  Google Scholar 

  23. Tavano L, Muzzalupo R, Picci N, de Cindio B (2014) Co-encapsulation of antioxidants into niosomal carriers: gastrointestinal release studies for nutraceutical applications. Colloid Surface B 114:82–88

    Article  CAS  Google Scholar 

  24. Subramanian V, Venkatesan B, Tumala A, Vellaichamy E (2014) Topical application of Gallic acid suppresses the 7,12-DMBA/Croton oil induced two-step skin carcinogenesis by modulating anti-oxidants and MMP-2/MMP-9 in Swiss albino mice. Food Chem Toxicol 66:44–55

    Article  CAS  Google Scholar 

  25. Chen L, Remondetto GE, Subirade M (2006) Food protein-based materials as nutraceutical delivery systems. Trends Food Sci Tech 17:272–283

    Article  CAS  Google Scholar 

  26. Wang Y, Liu J, Chen F, Zhao G (2013) Effects of molecular structure of polyphenols on their noncovalent interactions with oat β-glucan. J Agric Food Chem 61:4533–4538

    Article  CAS  Google Scholar 

  27. Hirun N, Bao H, Li L, Deen GR, Tantishaiyakul V (2012) Micro-DSC, rheological and NMR investigations of the gelation of gallic acid and xyloglucan. Soft Matter 8:7258–7268

    Article  CAS  Google Scholar 

  28. Hirun N, Tantishaiyakul V, Pichayakorn W (2010) Effect of Eriochrome Black T on the gelatinization of xyloglucan investigated using rheological measurement and release behavior of Eriochrome Black T from xyloglucan gel matrices. Int J Pharm 388:196–201

    Article  CAS  Google Scholar 

  29. Hirun N, Sangfai T, Tantishaiyakul V (2015) Characterization of freeze-dried gallic acid/xyloglucan. Drug Dev Ind Pharm 41:194–200

    Article  CAS  Google Scholar 

  30. Behera B, Patil V, Sagiri SS, Pal K, Ray SS (2012) Span-60-based organogels as probable matrices for transdermal/topical delivery systems. J Appl Polym Sci 125:852–863

    Article  CAS  Google Scholar 

  31. Glatter O, Kratky O (1982) Small angle X-ray scattering. Academic Press, London

    Google Scholar 

  32. Soontaranon S, Rugmai S (2012) Small angle X-ray scattering at Siam photon laboratory. Chin J Phys 50:204–210

    CAS  Google Scholar 

  33. Neo YP, Ray S, Jin J, Gizdavic-Nikolaidis M, Nieuwoudt MK, Liu D et al (2013) Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: a physicochemical study based on zein–gallic acid system. Food Chem 136:1013–1021

    Article  CAS  Google Scholar 

  34. Giri A, Bhowmick M, Pal S, Bandyopadhyay A (2011) Polymer hydrogel from carboxymethyl guar gum and carbon nanotube for sustained trans-dermal release of diclofenac sodium. Int J Biol Macromol 49:885–893

    Article  CAS  Google Scholar 

  35. Ghouchi Eskandar N, Simovic S, Prestidge C (2009) Nanoparticle coated submicron emulsions: sustained in vitro release and improved dermal delivery of all-trans-retinol. Pharm Res 26:1764–1775

    Article  CAS  Google Scholar 

  36. Bansil R, Gupta MK (1980) Effect of varying crosslinking density on polyacrylamide gels. Ferroelectrics 30:63–71

    Article  CAS  Google Scholar 

  37. Slootmaekers D, Mandel M, Reynaers H (1991) Dynamic light scattering by κ- and λ-carrageenan solutions. Int J Biol Macromol 13:17–25

    Article  CAS  Google Scholar 

  38. Chen Y, Hu Z, Lang JC (1998) Turbidity investigation of the sol–gel transition in carrageenan gels under physiologic conditions. J Appl Polym Sci 68:29–35

    Article  CAS  Google Scholar 

  39. Seuyep D, Szopinski D, Luinstra GA, Theato P (2014) Post-polymerization modification of reactive polymers derived from vinylcyclopropane: a poly(vinylcyclopropane) derivative with physical gelation and UCST behaviour in ethanol–water mixtures. Polym Chem 5:5823–5828

    Article  Google Scholar 

  40. Wang ZY, White JW, Konno M, Saito S, Nozawa T (1995) A small-angle x-ray scattering study of alginate solution and its sol–gel transition by addition of divalent cations. Biopolymers 35:227–238

    Article  CAS  Google Scholar 

  41. Yuguchi Y, Urakawa H, Kajiwara K (2002) The effect of potassium salt on the structural characteristics of gellan gum gel. Food Hydrocolloids 16:191–195

    Article  CAS  Google Scholar 

  42. Tada T, Matsumoto T, Masuda T (1998) Structure of molecular association of curdlan at dilute regime in alkaline aqueous systems. Chem Phys 228:157–166

    Article  CAS  Google Scholar 

  43. Ishii D, Tatsumi D, Matsumoto T, Murata K, Hayashi H, Yoshitani H (2006) Investigation of the structure of cellulose in LiCl/DMAc solution and its gelation behavior by small-angle X-ray scattering measurements. Macromol Biosci 6:293–300

    Article  CAS  Google Scholar 

  44. Yoshida K, Fukushima Y, Yamaguchi T (2014) A study of alcohol and temperature effects on aggregation of β-lactoglobulin by viscosity and small-angle X-ray scattering measurements. J Mol Liq 189:1–8

    Article  CAS  Google Scholar 

  45. Kondo T, Sawatari C (1996) A Fourier transform infra-red spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose. Polymer 37:393–399

    Article  CAS  Google Scholar 

  46. Ikkai F, Shibayama M, Kashihara H, Nomura S (1997) SAXS and dynamic viscoelastic studies on segmented polyurethaneurea solutions. Polymer 38:769–774

    Article  CAS  Google Scholar 

  47. Michon C, Vigouroux F, Boulenguer P, Cuvelier G, Launay B (2000) Gelatin/iota-carrageenan interactions in non-gelling conditions. Food Hydrocolloid 14:203–208

    Article  CAS  Google Scholar 

  48. Weiβ G, Knoch A, Laicher A, Stanislaus F, Daniels R (1995) Simple coacervation of hydroxypropyl methylcellulose phthalate (HPMCP) I. Temperature and pH dependency of coacervate formation. Int J Pharm 124:87–96

    Article  Google Scholar 

  49. Mori T, Nakashima M, Fukuda Y, Minagawa K, Tanaka M, Maeda Y (2006) Soluble–insoluble–soluble transitions of aqueous poly(N-vinylacetamide-co-acrylic acid) solutions. Langmuir 22:4336–4342

    Article  CAS  Google Scholar 

  50. Muster TH, Vincent B (2003) Particle formation and gelling behaviour of anionic oligoesters in aqueous solution. Colloid Surf A 228:181–187

    Article  CAS  Google Scholar 

  51. Dahan E, Sundararajan PR (2013) Thermoreversible physical gels of poly(dimethylsiloxane) without cross-links or functionalization. Langmuir 29:8452–8458

    Article  CAS  Google Scholar 

  52. Gabriele A, Spyropoulos F, Norton IT (2009) Kinetic study of fluid gel formation and viscoelastic response with kappa-carrageenan. Food Hydrocolloid 23:2054–2061

    Article  CAS  Google Scholar 

  53. Kalashnikov VN, Tsiklauri MG (1996) Supermolecular structures and flow birefringence in polymer solutions. Colloid Polym Sci 274:1119–1128

    Article  CAS  Google Scholar 

  54. Audsley A, Fursey A (1965) Examination of a polysaccharide flocculant and flocculated kaolinite by electron microscopy. Nature 208:753–754

    Article  CAS  Google Scholar 

  55. Kalashnikov VN, Tsiklauri MG (1990) Super-molecular structure of dilute solutions of high molecular weight polymers which lead to reduced turbulent friction. J Eng Phys 58:40–45

    Article  Google Scholar 

  56. Keller A (1995) Aspects of polymer gels. Faraday Discuss 101:1–49

    Article  CAS  Google Scholar 

  57. Mengome LE, Voxeur A, Akue JP, Lerouge P (2014) Screening of antioxidant activities of polysaccharides extracts from endemic plants in Gabon. Bioact Carbohydr Diet Fibre 3:77–88

    Article  CAS  Google Scholar 

  58. Wu Z, Ming J, Gao R, Wang Y, Liang Q, Yu H et al (2011) Characterization and antioxidant activity of the complex of tea polyphenols and oat β-glucan. J Agr Food Chem 59:10737–10746

    Article  CAS  Google Scholar 

  59. Olga G, Styliani C, Ioannis RG (2015) Coencapsulation of ferulic and gallic acid in hp-b-cyclodextrin. Food Chem 185:33–40

    Article  CAS  Google Scholar 

  60. Cappelli C, Mennucci B, Monti S (2005) Environmental effects on the spectroscopic properties of gallic acid: a combined classical and quantum mechanical study. J Phys Chem A 109:1933–1943

    Article  CAS  Google Scholar 

  61. Hirun N, Dokmaisrijan S, Tantishaiyakul V (2012) Experimental FTIR and theoretical studies of gallic acid–acetonitrile clusters. Spectrochim Acta A Mol Biomol Spectrosc 86:93–100

    Article  CAS  Google Scholar 

  62. Garcia X, Escribano E, Domenech J, Queralt J, Freixes J (2011) In vitro characterization and in vivo analgesic and anti-allodynic activity of PLGA-bupivacaine nanoparticles. J Nanopart Res 13:2213–2223

    Article  CAS  Google Scholar 

  63. Simoes SM, Veiga F, Ribeiro AC, Figueiras AR, Taboada P, Concheiro A et al (2014) Supramolecular gels of poly-α-cyclodextrin and PEO-based copolymers for controlled drug release. Eur J Pharm Biopharm 87:579–588

    Article  CAS  Google Scholar 

  64. Ansari M, Kazemipour M, Aklamli M (2006) The study of drug permeation through natural membranes. Int J Pharm 327:6–11

    Article  CAS  Google Scholar 

  65. François NJ, Rojas AM, Daraio ME (2005) Rheological and drug-release behaviour of a scleroglucan gel matrix at different drug loadings. Polym Int 54:1613–1619

    Article  Google Scholar 

  66. Peppas NA, Khare AR (1993) Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv Drug Deliver Rev 11:1–35

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand, through its program of Center of Excellence Network. In addition, we would like to thank the BL1.3W beamline staff of the Synchrotron Light Research Institute for their support in the SAXS experiments and for treatment of the data. Thanks also to Dr. Brian Hodgson for assistance with the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vimon Tantishaiyakul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirun, N., Tantishaiyakul, V., Sangfai, T. et al. Nano-structure, phase transition and morphology of gallic acid and xyloglucan hydrogel. Polym. Bull. 73, 2211–2226 (2016). https://doi.org/10.1007/s00289-016-1604-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1604-8

Keywords

Navigation