Skip to main content
Log in

Impedance analysis of charge transfer upon nickel doping in Tio2-based flexible dye-sensitized solar cell

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Flexible dye-sensitized solar cells (FDSSCs) have promoted interest in plastic industries as they are lightweight, flexible, and mechanically robust to accelerate production and reduce cost. However, the plastic substrates have temperature limitations in producing the TiO2 photoanode and degrade the performance of FDSSC. The main reason for this degradation is the low charge transfer in the photoanode layer. Although there is plenty of research on low-temperature fabrication methods, they indirectly increase the operational cost. Therefore, a new approach is necessary for charge transfer improvement without affecting the temperature in a low-cost platform. In this study, we present a photoanode that improves the charge transfer by doping nickel (Ni) in the TiO2 layer. A low amount of Ni doping (15%) exhibited Rct >> Rt, indicating a high charge transport and low electron recombination rate (120.84 s−1). On the other hand, higher amount Ni doping (>> 45%) has Rct << Rt which deteriorates the performance of the cell by causing severe agglomeration issues, indicating a high electron recombination rate (369.75 s−1). Moreover, the high charge transfer in (TiO2)85-Ni15-based FDSSC facilitates the electron lifetime of the cell up to 8.28 ms. Therefore, an optimum doping of Ni in TiO2-based FDSSC is studied in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Qazi A, Hussain F, ABD. Rahim N, Hardaker G, Alghazzawi D, Shaban K, Haruna K, (2019) Towards sustainable energy: a systematic review of renewable energy sources, technologies, and public opinions. IEEE Access 7:63837–63851. https://doi.org/10.1109/ACCESS.2019.2906402

    Article  Google Scholar 

  2. Gong J, Li C, Wasielewski MR (2019) Advances in solar energy conversion. Chem Soc Rev 48(7):1862–1864. https://doi.org/10.1039/C9CS90020A

    Article  CAS  PubMed  Google Scholar 

  3. O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740. https://doi.org/10.1038/353737a0

    Article  Google Scholar 

  4. Tan WW, Yin X, Zhou X, Zhang J, Xiao X, Lin Y (2009) Electrophoretic deposition of nanocrystalline TiO2 films on Ti substrates for use in flexible dye-sensitized solar cells. Electrochim Acta 54:4467–4472. https://doi.org/10.1016/j.electacta.2009.03.037

    Article  CAS  Google Scholar 

  5. Li G, Sheng L, Li T, Hu J, Li P, Wang K (2019) Engineering flexible dye-sensitized solar cells for portable electronics. Sol Energy 177:80–98. https://doi.org/10.1016/j.solener.2018.11.017

    Article  CAS  Google Scholar 

  6. Li G, Wang H, Wang M, Liu W, Ardhi REA, Zou D, Lee JK (2018) Study on a stretchable, fiber-shaped, and TiO2 nanowire array-based dye-sensitized solar cell with electrochemical impedance spectroscopy method. Electrochim Acta 267:34–40. https://doi.org/10.1016/j.electacta.2018.02.075

    Article  CAS  Google Scholar 

  7. Chang H, Hsu CM, Kao PK, Yang YJ, Hsu CC, Cheng IC, Chen JZ (2014) Dye-sensitized solar cells with nanoporous TiO2 photoanodes sintered by N2 and air atmospheric pressure plasma jets with/without air-quenching. J Power Sources 251:215–221. https://doi.org/10.1016/j.jpowsour.2013.11.051

    Article  CAS  Google Scholar 

  8. Heinz V, Toepfl S, Knorr D (2003) Impact of temperature on lethality and energy efficiency of apple juice pasteurization by pulsed electric fields treatment. Innov Food Sci Emerg 4:167–175. https://doi.org/10.1016/S1466-8564(03)00017-1

    Article  Google Scholar 

  9. Weerasinghe HC, Huang F, Cheng YB (2013) Fabrication of flexible dye sensitized solar cells on plastic substrates. Nano Energy 2:174–189. https://doi.org/10.1016/j.nanoen.2012.10.004

    Article  CAS  Google Scholar 

  10. Mahalingam S, Abdullah H, Manap A (2018) Role of acid-treated CNTs in chemical and electrochemical impedance study of dye-sensitised solar cell. Electrochim Acta 264:275–283. https://doi.org/10.1016/j.electacta.2018.01.138

    Article  CAS  Google Scholar 

  11. Chou TP, Zhang Q, Russo B, Fryxell GE, Cao G (2007) Titania particle size effect on the overall performance of dye-sensitized solar cells. J Phys Chem C 111:6296–6302. https://doi.org/10.1021/jp068939f

    Article  CAS  Google Scholar 

  12. Benko G, Kallionien J, Myllperkio P, Trif F, Tommola JEIK, Yartsev AP, Sundström V (2004) Interligand electron transfer determines triplet excited state electron injection in RuN3-sensitized TiO2 films. J Phys Chem B 108:2862–2867. https://doi.org/10.1021/jp036778z

    Article  CAS  Google Scholar 

  13. Chen D, Huang F, Bing CY, Caruso RA (2009) Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: a superior candidate for high-performance dye-sensitized solar cells. Adv Mater 21:2206–2210. https://doi.org/10.1002/adma.200802603

    Article  CAS  Google Scholar 

  14. Weerasinghe HC, Sirimanne PM, Simon YB, Cheng YB (2009) Fabrication of efficient solar cells on plastic substrates using binder-free ball milled titania slurries. Photochem and Photobiol a-Chem 206:64–70. https://doi.org/10.1016/j.jphotochem.2009.05.013

    Article  CAS  Google Scholar 

  15. Grinis L, Kotlyar S, Puhle S, Grinblat J, Zaban A (2010) Conformal nano-sized inorganic coatings on mesoporous TiO2 films for low-temperature dye-sensitized solar cell fabrication. Adv Funct Mater 20(2):282–288. https://doi.org/10.1002/adfm.200901717

    Article  CAS  Google Scholar 

  16. Uchida S, Tomiha M, Takizawa MK (2004) Flexible dye-sensitized solar cells by 28 GHz microwave irradiation. Photochem and Photobiol a-Chem 164(1–3):93–96. https://doi.org/10.1016/j.jphotochem.2004.01.026

    Article  CAS  Google Scholar 

  17. Jellinek MH, Fankuchen I (1945) X-ray diffraction examination of gamma alumina. Ind Eng Chem 37:158–163. https://doi.org/10.1021/ie50422a012

    Article  CAS  Google Scholar 

  18. Sachs M, Pastor E, Kafizas A, Durrant JR (2016) Evaluation of surface state mediated charge recombination in anatase and rutile TiO2. J Phys Chem Lett 7:3742–3746. https://doi.org/10.1021/acs.jpclett.6b01501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ariyanto NP, Abdullah H, Ghani NSA (2009) Surface morphology characterisation of Sn-doped ZnO films for antireflective coating. Mater Res Innov 13:157–160. https://doi.org/10.1179/143307509X437491

    Article  CAS  Google Scholar 

  20. Corkish R, Green MA, Watt ME, Wenham SR (2013) Applied photovoltaics, Earthscan, London. https://trove.nla.gov.au/work/11523836

  21. Thirupathi S, Kaliamurthy AK, Senthilselvan J, Kathikeyan J (2018) Effect of Ni dopant in TiO2 matrix on its interfacial charge transportation and efficiency of DSSCs. J Mater Sci-Mater El 29:2228. https://doi.org/10.1007/s10854-017-8137-2

    Article  CAS  Google Scholar 

  22. Hoshikawa T, Yamada M, Kikuchi R, Eguchi K (2005) Impedance analysis of internal resistance affecting the photoelectrochemical performance of dye-sensitized solar cells. J. Electrochem. Soc. 152:E68

    Article  CAS  Google Scholar 

  23. Omar A, Abdullah H, Yarmo A, Shaari S, Taha MR (2013) Structural and morphology studies of zinc oxide incorporating single-walled carbon nanotubes as a nanocomposite thin film. J Phys D Appl Phys 46(165503):3603–3610. https://doi.org/10.1007/s10854-013-1291-2

    Article  CAS  Google Scholar 

  24. Wang Q, Moser JE, Gratzel M (2005) Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J Phys Chem B 109:14945–14953. https://doi.org/10.1021/jp052768h

    Article  CAS  PubMed  Google Scholar 

  25. Bisquert J (2002) Theory of the impedance of electron diffusion and recombination in a thin layer. J Phys Chem B 106:325–333. https://doi.org/10.1021/jp052768h

    Article  CAS  Google Scholar 

  26. Pitarch A, Belmonte GG, Sero IM, Bisquert J (2004) Electrochemical impedance spectra for the complete equivalent circuit of diffusion and reaction under steady-state recombination current. Phys Chem Chem Phys 6:2983–2988. https://doi.org/10.1039/B401234H

    Article  CAS  Google Scholar 

  27. Gancalves AS, Goes MS, Santiago FF, Moehl T, Davolos MR, Bisquert J, Yanagida S, Nogueiru AF, Bueno PR (2011) Doping saturation in dye-sensitized solar cells based on ZnO: ga nanostructured photoanodes. Electrochim Acta 56:6503–6509. https://doi.org/10.1016/j.electacta.2011.05.003

    Article  CAS  Google Scholar 

  28. Mahalingam S, Abdullah H, Amin N, Manap A (2019) Incident photon-to-current efficiency of thermally treated SWCNTs-based nanocomposite for dye-sensitized solar cell. Ionics 25:747–761. https://doi.org/10.1007/s11581-018-2629-9

    Article  CAS  Google Scholar 

  29. Mahalingam S, Abdullah H (2016) Electron transport study of indium oxide as photoanode in DSSCs: a review. Renew Sust Energ Rev 63:245–255. https://doi.org/10.1016/j.rser.2016.05.067

    Article  CAS  Google Scholar 

  30. Wang Y, Hao Y, Cheng H, Ma J, Xu B, Li W, Cai S (1999) Photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode. J Mater Sci 34:2773–2778. https://doi.org/10.1023/A%3A1004658629133

    Article  CAS  Google Scholar 

  31. Jasim KE (2011) Dye sensitized solar cells-working principles, challenges and opportunities. In: Kosyachenko LA (ed) Solar cells-dye-sensitized devices. InTech, Rijeka

    Google Scholar 

Download references

Acknowledgement

This work was fully supported by Universiti Kebangsaan Malaysia (Project No. GUP-2018-097 and FRGS/1/2019/STG07/UKM/02/11) and Photonic Technology Laboratory, Department of Electrical, Electronics and Systems Engineering, UKM, for the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Abdullah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, H., Mahalingam, S., Xian, K.J. et al. Impedance analysis of charge transfer upon nickel doping in Tio2-based flexible dye-sensitized solar cell. Polym. Bull. 78, 5755–5768 (2021). https://doi.org/10.1007/s00289-020-03396-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03396-w

Keywords

Navigation