Skip to main content
Log in

Probing the electrical and dielectric properties of polyaniline multi-walled carbon nanotubes nanocomposites doped in different protonic acids

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polymer nanocomposites with vital reinforcements of conductive fillers have evinced as next-generation high-performance materials with multi-functional applications. Herein, we report the facile synthesis of thermally stable, highly electrically conducting polyaniline multi-walled carbon nanotubes (PANI/MWCNT) nanocomposites doped in two different protonic acids, i.e. hydrochloric acid (HCl) and sulphuric acid (H2SO4). The doping acids significantly affect the electric and dielectric properties of conducting polymer nanocomposites. The paper probes in the synergistic effects of MWCNTs and the effect of doping acid on the thermal stability, conductivity and dielectric properties of the nanocomposites based on PANI nanofibres. The structural, morphological, optical, thermal and electrical properties were evaluated through X-ray diffraction, scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, UV–Vis spectroscopy, thermogravimetric analysis and two-point probe technique. Ascribed to the high interfacial interaction between PANI and MWCNT, and considering the effect of doping acids, nanocomposites with high thermal stability, enhanced conductivity and high dielectric constant that can store large electrical charges have been synthesized by surfactant-assisted, in situ oxidative polymerization of aniline, in the presence of potassium persulfate as oxidant. The micellar structure of surfactant assists the dispersion of MWCNTs as well as the formation of PANI/MWCNT tubular structures. The effect of surfactant below and above critical micelle concentration was also studied. This complete study would affirm such a nanocomposite which procures excellent electrical and dielectric properties for microelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44:1624–1652

    Article  CAS  Google Scholar 

  2. Alam MM, Wang J, Guo Y, Lee SP, Tseng HR (2005) Electrolyte-gated transistors based on conducting polymer nanowire junction arrays. J Phys Chem B 109:12777–12784

    Article  CAS  Google Scholar 

  3. Zhang X, Goux WJ, Manohar SK (2004) Synthesis of polyaniline nanofibers by “nanofiber seeding”. J Am Chem Soc 126:4502–4503

    Article  CAS  Google Scholar 

  4. Chiou NR, Lu C, Guan J, Lee LJ, Epstein AJ (2007) Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties. Nat Nanotechnol 2:354

    Article  CAS  Google Scholar 

  5. Virji S, Kaner RB, Weiller BH (2006) Hydrogen sensors based on conductivity changes in polyaniline nanofibers. J Phys Chem B 110:22266–22270

    Article  CAS  Google Scholar 

  6. Dang ZM, Yuan JK, Zha JW, Zhou T, Li ST, Hu GH (2012) Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Prog Mater Sci 57:660–723

    Article  CAS  Google Scholar 

  7. Yousefi N, Sun X, Lin X, Shen X, Jia J, Zhang B, Kim JK (2014) Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high performance electromagnetic interference shielding. Adv Mater 26:5480–5487

    Article  CAS  Google Scholar 

  8. Famengo A, Ferrario A, Boldrini S, Battiston S, Fiameni S, Pagura C, Fabrizio M (2017) Polyaniline–carbon nanohorn composites as thermoelectric materials. Polym Int 66:1725–1730

    Article  CAS  Google Scholar 

  9. Zhou K, Wang H, Jiu J, Liu J, Yan H, Suganuma K (2018) Polyaniline films with modified nanostructure for bifunctional flexible multicolor electrochromic and supercapacitor applications. Chem Eng 345:290–299

    Article  CAS  Google Scholar 

  10. Jelmy EJ, Ramakrishnan S, Rangarajan M, Kothurkar NK (2013) Effect of different carbon fillers and dopant acids on electrical properties of polyaniline nanocomposites. Bull Mater Sci 36:37–44

    Article  CAS  Google Scholar 

  11. Zhang L, Wan M (2002) Synthesis and characterization of self-assembled polyaniline nanotubes doped with D-10-camphorsulfonic acid. Nanotechnology 13:750

    Article  CAS  Google Scholar 

  12. Kumar V, Yokozeki T, Goto T, Takahashi T, Sharma S, Dhakate SR, Singh BP (2018) Scavenging phenomenon and improved electrical and mechanical properties of polyaniline–divinylbenzene composite in presence of MWCNT. Int J Mech Mater Des 14:697–708

    Article  CAS  Google Scholar 

  13. Wang Y, Liu A, Han Y, Li T, Jin T, Zhang J, Zhang J (2019) Itaconic acid-doped polyaniline/MWCNTs nanocomposites for microwave absorbing materials. High Perform Polym 31:928–934

    Article  CAS  Google Scholar 

  14. Gu H, Zhang H, Ma C, Lyu S, Yao F, Liang C, Gu J (2017) Polyaniline assisted uniform dispersion for magnetic ultrafine barium ferrite nanorods reinforced epoxy metacomposites with tailorable negative permittivity. J Phys Chem C 121:13265–13273

    Article  CAS  Google Scholar 

  15. Zhang Y, Wang L, Zhang J, Song P, Xiao Z, Liang C, Gu J (2019) Fabrication and investigation on the ultra-thin and flexible Ti3C2Tx/co-doped polyaniline electromagnetic interference shielding composite films. Compos Sci Technol 183:107833

    Article  CAS  Google Scholar 

  16. Mostaani F, Moghbeli MR, Karimian H (2018) Electrical conductivity, aging behavior, and electromagnetic interference (EMI) shielding properties of polyaniline/MWCNT nanocomposites. J Thermoplast Compos Mater 31:1393–1415

    Article  CAS  Google Scholar 

  17. Choi HJ, Park SJ, Kim ST, Jhon MS (2005) Electrorheological application of polyaniline/multi-walled carbon nanotube composites. Diam Relat Mater 14:766–769

    Article  CAS  Google Scholar 

  18. Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A Appl Sci Manuf 41:1345–1367

    Article  Google Scholar 

  19. Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 128:37–46

    Article  Google Scholar 

  20. Strano MS, Moore VC, Miller MK, Allen MJ, Haroz EH, Kittrell C, Smalley RE (2003) The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes. J Nanosci Nanotechnol 3:81–86

    Article  CAS  Google Scholar 

  21. Goyal PS, Aswal VK (2001) Micellar structure and inter-micelle interactions in micellar solutions: results of small angle neutron scattering studies. Curr Sci 80:972–979

    CAS  Google Scholar 

  22. Rahy A, Bae J, Wu A, Manohar SK, Yang DJ (2011) Nano-emulsion use for the synthesis of polyaniline nano-grains or nano-fibers. Polym Adv Technol 22:664–668

    Article  CAS  Google Scholar 

  23. Kulkarni MV, Viswanath AK (2004) Scanning electron microscopy, spectroscopy, and thermal studies of polyaniline doped with various sulfonic acids. J Macromol Sci A 41:1173–1186

    Article  Google Scholar 

  24. Wu TM, Lin YW (2006) Doped polyaniline/multi-walled carbon nanotube composites: preparation, characterization and properties. Polymer 47:3576–3582

    Article  CAS  Google Scholar 

  25. Jang J, Bae J, Lee K (2005) Synthesis and characterization of polyaniline nanorods as curing agent and nanofiller for epoxy matrix composite. Polymer 46:3677–3684

    Article  CAS  Google Scholar 

  26. Du XS, Xiao M, Meng YZ (2004) Facile synthesis of highly conductive polyaniline/graphite nanocomposites. Eur Polym J 40:1489–1493

    Article  CAS  Google Scholar 

  27. Tchmutin IA, Ponomarenko AT, Krinichnaya EP, Kozub GI, Efimov ON (2003) Electrical properties of composites based on conjugated polymers and conductive fillers. Carbon 41:1391–1395

    Article  CAS  Google Scholar 

  28. Zhao B, Hu H, Yu A, Perea D, Haddon RC (2005) Synthesis and characterization of water soluble single-walled carbon nanotube graft copolymers. J Am Chem Soc 127:8197–8203

    Article  CAS  Google Scholar 

  29. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409:47–99

    Article  Google Scholar 

  30. Wu TM, Lin YW, Liao CS (2005) Preparation and characterization of polyaniline/multi-walled carbon nanotube composites. Carbon 43:734–740

    Article  CAS  Google Scholar 

  31. Salvatierra RV, Oliveira MM, Zarbin AJ (2010) One-pot synthesis and processing of transparent, conducting, and freestanding carbon nanotubes/polyaniline composite films. Chem Mater 22:5222–5234

    Article  CAS  Google Scholar 

  32. Mostafaei A, Zolriasatein A (2012) Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods. Prog Nat Sci Mater 22:273–280

    Article  Google Scholar 

  33. Rybiński P (2017) Influence of carbon fillers on thermal properties and flammability of polymeric nanocomposites. Int Polym Proc 32:270–289

    Article  Google Scholar 

  34. Koops CG (1951) On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys Rev 83:121

    Article  CAS  Google Scholar 

  35. Maxwell JC (1973) Electricity and magnetism, vol 1. Oxford University Press, New York, p 828

    Google Scholar 

  36. Patankar KK, Dombale PD, Mathe VL, Patil SA, Patil RN (2001) AC conductivity and magnetoelectric effect in MnFe1. 8Cr0. 2O4–BaTiO3 composites. Mater Sci Eng B 87:53–58

    Article  Google Scholar 

  37. Pinto NJ, Sinha GP, Aliev FM (1998) Frequency-dependent conductivity and dielectric permittivity of emeraldine base and weakly doped poly (o-toluidine). Synth Metal 94:199–203

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SJP would also like to acknowledge DST for providing the funding under INSPIRE-Fellowship Scheme (IF 160064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Chandra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, S.J., Gupta, B.K. & Chandra, P. Probing the electrical and dielectric properties of polyaniline multi-walled carbon nanotubes nanocomposites doped in different protonic acids. Polym. Bull. 78, 5667–5683 (2021). https://doi.org/10.1007/s00289-020-03399-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03399-7

Navigation