Skip to main content
Log in

Localization and characterization of Citrus centromeres by combining half-tetrad analysis and CenH3-associated sequence profiling

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

The physical locations of citrus centromere are revealed by combining genetic and immunological assays for the first time and nine citrus centromere-specific markers for cytogenetics are mined.

Abstract

Centromere localization is challenging, because highly redundant repetitive sequences in centromeric regions make sequence assembly difficult. Although several citrus genomes have been released, the centromeric regions and their characteristics remain to be elucidated. Here, we mapped citrus centromeres through half-tetrad analysis (HTA) that included the genotyping of 54 tetraploid hybrids derived from 2n megagametophytes of Nadorcott tangor with 212 single nucleotide polymorphism (SNP) markers. The sizes of centromeric regions, which estimated based on the heterozygosity restitution rate pattern along the chromosomes, ranged from 1.12 to 18.19 Mb. We also profiled the binding sequences with the centromere-specific histone variant CenH3 by chromatin immunoprecipitation sequencing (ChIP-seq). Based on the positions of the top ten CenH3-enriched contigs, the sizes of centromeric regions were estimated to range from 0.01 to 7.60 Mb and were either adjacent to or included in the centromeric regions identified by HTA. We used DNA probes from two repeats selected from the centromeric regions and seven CenH3-binding centromeric repeats to verify centromeric locations by fluorescence in situ hybridization (FISH). Centromere localization in citrus will contribute to the mining of centromeric/pericentromeric markers, thus to facilitate the rapid identification of mechanisms underlying 2n gamete formation and serve the polyploidy breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aleza P, Juarez J, Cuenca J, Ollitrault P, Navarro L (2010) Recovery of citrus triploid hybrids by embryo rescue and flow cytometry from 2x × 2x sexual hybridisation and its application to extensive breeding programs. Plant Cell Rep 29:1023–1034

    CAS  Google Scholar 

  • Aleza P, Cuenca J, Hernandez M, Juarez J, Navarro L, Ollitrault P (2015) Genetic mapping of centromeres in the nine Citrus clementina chromosomes using half-tetrad analysis and recombination patterns in unreduced and haploid gametes. BMC Plant Biol 15:80–93

    Google Scholar 

  • Aleza P, Cuenca J, Juárez J, Navarro L, Ollitrault P (2016) Inheritance in doubled-diploid clementine and comparative study with SDR unreduced gametes of diploid clementine. Plant Cell Rep 35:1573–1586

    CAS  Google Scholar 

  • Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580

    CAS  Google Scholar 

  • Bernet GP, Fernandez-Ribacoba J, Carbonell EA, Asins MJ (2010) Comparative genome-wide segregation analysis and map construction using a reciprocal cross design to facilitate citrus germplasm utilization. Mol Breed 25:659–673

    Google Scholar 

  • Bi YF, Zhao QZ, Yan WK, Li MX, Liu YX, Cheng CY, Zhang L, Yu XQ, Li J, Qian CT, Wu YF, Chen JF, Lou QF (2019) Flexible chromosome painting based on multiplex PCR of oligonucleotides and its application for comparative chromosome analyses in Cucumis. Plant J 102:178–186

    Google Scholar 

  • Cao HB, Zhang JC, Xu JD, Ye JL, Yun Z, Xu Q, Xu J, Deng XX (2012) Comprehending crystalline β-carotene accumulation by comparing engineered cell models and the natural carotenoid-rich system of citrus. J Exp Bot 63:4403–4417

    CAS  Google Scholar 

  • Cheng ZK, Dong FG, Langdon T, Ouyang S, Buell CR, Gu MH, Blattner FR, Jiang JM (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704

    CAS  Google Scholar 

  • Cheng YJ, Guo WW, Yi HL, Pang XM, Deng XX (2003) An efficient protocol for genomic DNA extraction from Citrus species. Plant Mol Biol Rep 21:177a–177g

    Google Scholar 

  • Comai L, Maheshwari S, Marimuthu MPA (2017) Plant centromeres. Curr Opin Plant Biol 36:158–167

    CAS  Google Scholar 

  • Cuenca J, Froelicher Y, Aleza P, Juarez J, Navarro L, Ollitrault P (2011) Multilocus half-tetrad analysis and centromere mapping in citrus: evidence of SDR mechanism for 2n megagametophyte production and partial chiasma interference in mandarin cv 'Fortune'. Heredity 107:462–470

    CAS  Google Scholar 

  • Cuenca J, Aleza P, Navarro L, Ollitrault P (2013) Assignment of SNP allelic configuration in polyploids using competitive allele-specific PCR: application to citrus triploid progeny. Ann Bot 111:731–742

    CAS  Google Scholar 

  • Cuenca J, Aleza P, Juarez J, Garcia-Lor A, Froelicher Y, Navarro L, Ollitrault P (2015) Maximum-likelihood method identifies meiotic restitution mechanism from heterozygosity transmission of centromeric loci: application in citrus. Sci Rep 5:9897–9908

    CAS  Google Scholar 

  • Curtolo M, Soratto TAT, Gazaffi R, Takita MA, Machado MA, Cristofani-Yaly M (2018) High-density linkage maps for Citrus sunki and Poncirus trifoliata using DArTseq markers. Tree Genet Genomes 14:5–15

    Google Scholar 

  • Deng HH, Xiang SQ, Guo QG, Jin WW, Cai ZX, Liang GL (2019) Molecular cytogenetic analysis of genome-specific repetitive elements in Citrus clementina Hort. Ex Tan. and its taxonomic implications. BMC Plant Biol 19:77–88

    Google Scholar 

  • Fernandes JB, Wlodzimierz P, Henderson R (2019) Meiotic recombination within plant centromeres. Curr Opin Plant Biol 48:26–35

    CAS  Google Scholar 

  • Fransz PF, Armstrong S, de Jong JH, Parnell LD, van Drunen C, Dean C, Zabel P, Bisseling T, Jones HG (2000) Integrated cytogenetic map of chromosome arm 4S of A. thaliana: structural organization of heterochromatic knob and centromere region. Cell 100:367–376

    CAS  Google Scholar 

  • Grosser JW, Gmitter FG Jr (2011) Protoplast fusion for production of tetraploids and triploids: applications for scion and rootstock breeding in citrus. Plant Cell Tiss Org Cul 104:343–357

    CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Honsho C, Sakata A, Tanaka H, Ishimura S, Tetsumura T (2016) Single-pollen genotyping to estimate mode of unreduced pollen formation in Citrus tamurana cv. Nishiuchi Konatsu Plant Reprod 29:189–197

    CAS  Google Scholar 

  • Huang SM, Deng LB, Guan M, Li JN, Lu K, Wang HZ, Fu DH, Mason AS, Liu SY, Hua W (2013) Identification of genome-wide single nucleotide polymorphisms in allopolyploid crop Brassica napus. BMC Genom 14:717–727

    CAS  Google Scholar 

  • Huang M, Roose ML, Yu Q, Du D, Yu Y, Zhang Y, Deng Z, Stover E, Gmitter FG Jr (2018) Construction of high-density genetic maps and detection of QTLs associated with Huanglongbing tolerance in citrus. Front Plant Sci 9:1694

    Google Scholar 

  • Jiang JM, Gill BS, Wang GL, Ronald PC, Ward DC (1995) Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci 92:4487–4491

    CAS  Google Scholar 

  • Jiao YP, Peluso P, Shi JH, Liang T, Stitzer MC, Wang B, Campbell MS, Stein JC, Wei XH, Chin CS, Guill K, Regulski M, Kumari S, Olson A, Gent J, Schneider KL, Wolfgruber TK, May MR, Springer NM, Antoniou E, McCombie WR, Presting GG, McMullen M, Ross-Ibarra J, Dawe RK, Hastie A, Rank DR, Ware D (2017) Improved maize reference genome with single-molecule technologies. Nature 546:524–527

    CAS  Google Scholar 

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    CAS  Google Scholar 

  • Lan H, Chen CL, Miao Y, Yu CX, Guo WW, Xu Q, Deng XX (2016) Fragile sites of 'Valencia' sweet orange (Citrus sinensis) chromosomes are related with active 45s rDNA. PLoS One 11:e0151512–0151527

    Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie2. Nat Methods 9:357–359

    CAS  Google Scholar 

  • Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26:589–595

    Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Google Scholar 

  • Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang XQ, Zhang QS, Barrero RA, Li L, Taudien S, Groth M, Felder M, Hastie A, Šimková H, Staňková H, Vrána J, Chan S, Muñoz-Amatriaín M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao SJ, Chapman B, Dai F, Han Y, Li H, Li X, Lin CY, McCooke JK, Tan C, Wang PH, Wang SB, Yin SY, Zhou GF, Poland JA, Bellgard MI, Borisjuk L, Houben A, Doležel J, Ayling S, Lonardi S, Kersey P, Langridge P, Muehlbauer GJ, Clark MD, Caccamo M, Schulman AH, Mayer KFX, Platzer M, Close TJ, Scholz U, Hansson M, Zhang GP, Braumann I, Spannagl M, Li CD, Waugh R, Stein N (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433

    CAS  Google Scholar 

  • Mason AS, Rousseau-Gueutin M, Morice J, Bayer PE, Besharat N, Cousin A, Pradhan A, Parkin IAP, Chèvre AM, Batley J, Nelson MN (2016) Centromere locations in Brassica A and C genomes revealed through half-tetrad analysis. Genetics 202:513–523

    CAS  Google Scholar 

  • Melters DP, Bradnam KR, Young HA, Telis N, May MR, Ruby JG, Sebra R, Peluso P, Eid J, Rank D, Garcia JF, DeRisi JL, Smith T, Tobias C, Ross-Ibarra J, Korf I, Chan SWL (2013) Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol 14:R10–30

    Google Scholar 

  • Nagaki K, Talbert PB, Zhong CX, Dawe RK, Henikoff S, Jiang JM (2003) Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics 163:1221–1225

    CAS  Google Scholar 

  • Novak P, Neumann P, Pech J, Steinhaisl J, Macas J (2013) RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29:792–793

    CAS  Google Scholar 

  • Oliveira LC, Torres GA (2018) Plant centromeres: genetics, epigenetics and evolution. Mol Biol Rep 45:1491–1497

    CAS  Google Scholar 

  • Ollitrault P, Terol J, Chen C, Federici CT, Lotfy S, Hippolyte I, Ollitrault F, Berard A, Chauveau A, Cuenca J, Costantino G, Kacar Y, Mu L, Garcia-Lor A, Froelicher Y, Aleza P, Boland A, Billot C, Navarro L, Luro F, Roose ML, Gmitter FG Jr, Talon M, Brunel D (2012) A reference genetic map of C. clementina hort. ex Tan.; citrus evolution inferences from comparative mapping. BMC Genom 13:593–613

    CAS  Google Scholar 

  • Park TH, Kim JB, Hutten RC, van Eck HJ, Jacobsen E, Visser RG (2007) Genetic positioning of centromeres using half-tetrad analysis in a 4x–2x cross population of potato. Genetics 176:85–94

    CAS  Google Scholar 

  • Plohl M, Mestrovic N, Mravinac B (2014) Centromere identity from the DNA point of view. Chromosoma 123:313–325

    CAS  Google Scholar 

  • Robledillo LA, Koblizkova A, Novak P, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2018) Satellite DNA in Vicia faba is characterized by remarkable diversity in its sequence composition, association with centromeres, and replication timing. Sci Rep 8:5838–5849

    Google Scholar 

  • Rouiss H, Cuenca J, Navarro L, Ollitrault P, Aleza P (2017) Unreduced megagametophyte production in lemon occurs via three meiotic mechanisms, predominantly second-division restitution. Front Plant Sci 8:1211–1227

    Google Scholar 

  • Shimada T, Fujii H, Endo T, Ueda T, Sugiyama A, Nakano M, Kita M, Yoshioka T, Shimizu T, Nesumi H, Ikoma Y, Moriguchi T, Omura M (2014) Construction of a citrus framework genetic map anchored by 708 gene-based markers. Tree Genet Genomes 10:1001–1013

    Google Scholar 

  • Shimizu T, Tanizawa Y, Mochizuki T, Nagasaki H, Yoshioka T, Toyoda A, Fujiyama A, Kaminuma E, Nakamura Y (2017) Draft sequencing of the heterozygous diploid genome of Satsuma (Citrus unshiu Marc.) using a hybrid assembly approach. Front Genet 8:180–199

    Google Scholar 

  • Su HD, Liu YL, Liu C, Shi QH, Huang YH, Han FP (2019) Centromere satellite repeats have undergone rapid changes in polyploid Wheat subgenomes. Plant Cell 31:2035–2051

    CAS  Google Scholar 

  • Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S (2002) Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14:1053–1066

    CAS  Google Scholar 

  • Wang K, Zhang W, Jiang Y, Zhang T (2013) Systematic application of DNA Fiber-FISH technique in cotton. PLoS One 8:e75674–e75681

    CAS  Google Scholar 

  • Wang X, Xu YT, Zhang SQ, Cao L, Huang Y, Cheng JF, Wu GZ, Tian SL, Chen CL, Liu Y, Yu HW, Yang XM, Lan H, Wang N, Wang L, Xu JD, Jiang XL, Xie ZZ, Tan ML, Larkin RM, Chen LL, Ma BG, Ruan YJ, Deng XX, Xu Q (2017) Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nat Genet 49:765–772

    CAS  Google Scholar 

  • Wu GA, Prochnik S, Jenkins J, Salse J, Hellsten U, Murat F, Perrier X, Ruiz M, Scalabrin S, Terol J, Takita MA, Labadie K, Poulain J, Couloux A, Jabbari K, Cattonaro F, Fabbro CD, Pinosio S, Zuccolo A, Chapman J, Grimwood J, Tadeo FR, Estornell LH, Muñoz-Sanz JV, Ibanez V, Herrero-Ortega A, Aleza P, Pérez-Pérez J, Ramón D, Brunel D, Luro F, Chen C, Farmerie WG, Desany B, Kodira C, Mohiuddin M, Harkins T, Fredrikson K, Burns P, Lomsadze A, Borodovsky M, Reforgiato G, Freitas-Astúa J, Quetier F, Navarro L, Roose M, Wincker P, Schmutz J, Morgante M, Machado MA, Talon M, Jaillon O, Ollitrault P, Gmitter F, Daniel Rokhsar D (2014) Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat Biotechnol 32:656–662

    CAS  Google Scholar 

  • Xie KD, Wang XP, Biswas MK, Liang WJ, Xu Q, Grosser JW, Guo WW (2014) 2n megagametophyte formed via SDR contributes to tetraploidization in polyembryonic ‘Nadorcott’ tangor crossed by citrus allotetraploids. Plant Cell Rep 33:1641–1650

    CAS  Google Scholar 

  • Xie KD, Xia QM, Peng J, Wu XM, Xie ZZ, Chen CL, Guo WW (2019) Mechanism underlying 2n male and female gamete formation in lemon via cytological and molecular marker analysis. Plant Biotechnol Rep 13:141–149

    Google Scholar 

  • Xu Q, Chen LL, Ruan XA, Chen DJ, Zhu AD, Chen CL, Bertrand D, Jiao WB, Hao BH, Lyon MP, Chen JJ, Gao S, Xing F, Lan H, Chang JW, Ge XH, Lei Y, Hu Q, Miao Y, Wang L, Xiao SX, Biswas MK, Zeng WF, Guo F, Cao HB, Yang XM, Xu XW, Cheng YJ, Xu J, Liu JH, Luo SJH, Tang ZH, Guo WW, Kuang HH, Zhang HY, Roose ML, Nagarajan N, Deng XX, Ruan YJ (2013) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59–66

    CAS  Google Scholar 

  • Yelina NE, Lambing C, Hardcastle TJ, Zhao X, Santos B, Henderson IR (2015) DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in Arabidopsis. Gene Dev 29:2183–2202

    CAS  Google Scholar 

  • Yu Y, Bai J, Chen C, Plotto A, Yu Q, Baldwin EA, Gmitter FG Jr (2017) Identification of QTLs controlling aroma volatiles using a ‘Fortune’ × ‘Murcott’ (Citrus reticulata) population. BMC Genom 18:646–662

    Google Scholar 

  • Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nussbaum C, Myers RM, Brown M, Li W, Liu XS (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137–147

    Google Scholar 

  • Zhang WP, Zuo S, Li ZJ, Meng Z, Han JL, Song JQ, Pan YB, Wang K (2017) Isolation and characterization of centromeric repetitive DNA sequences in Saccharum spontaneum. Sci Rep 7:41659–41671

    CAS  Google Scholar 

  • Zhang L, Cai X, Wu J, Liu M, Grob S, Cheng F, Liang JL, Cai CC, Liu ZY, Liu B, Wang F, Li S, Liu FY, Li XM, Cheng L, Yang WC, Li MH, Grossniklaus U, Zheng HK, Wang XW (2018) Improved Brassica rapa reference genome by single-molecule sequencing and chromosome conformation capture technologies. Hortic Res 5:50–61

    Google Scholar 

  • Zhong CXY, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang JM, Dawe RK (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836

    CAS  Google Scholar 

  • Zhu CQ, Zheng XJ, Huang Y, Ye JL, Chen P, Zhang CL, Zhao F, Xie ZZ, Zhang SQ, Wang N, Li H, Wang L, Tang XM, Chai LJ, Xu Q, Deng XX (2019) Genome sequencing and CRISPR/Cas9 gene editing of an early flowering Mini-citrus (Fortunella hindsii). Plant Biotechnol J 17:2199–2210

    CAS  Google Scholar 

Download references

Funding

This research was financially supported by the National Key R&D Program of China (2018YFD1000200), the National Natural Science Foundation of China (Grant nos. 31820103011, 31701873, 31530065), and the Fundamental Research Funds for the Central Universities of China (Grant no. 2662018PY007). The authors thank our colleague Prof. Robert M. Larkin for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

KDX and WWG conceived of the study and designed the research. QMX conducted most of the experiments and the data analysis. QMX and KDX wrote the manuscript. LKM participated in cytological verification of the centromeric repeats. ZPY participated in the bioinformatics analysis. CLC provided the anti-CsCenH3 antibody. XMW provided suggestions on experimental design and revised the manuscript. JWG provided pollen of some citrus allotetraploids. All the authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Kai-Dong Xie.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Günther Hahne.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Additional file1 (DOCX 658 kb)

Additional file2 (XLSX 108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, QM., Miao, LK., Xie, KD. et al. Localization and characterization of Citrus centromeres by combining half-tetrad analysis and CenH3-associated sequence profiling. Plant Cell Rep 39, 1609–1622 (2020). https://doi.org/10.1007/s00299-020-02587-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-020-02587-z

Keywords

Navigation