Skip to main content

Advertisement

Log in

Microstructural shell strength of the Subantarctic pteropod Limacina helicina antarctica

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Anthropogenic inputs of CO2 are changing ocean chemistry and will likely affect calcifying marine organisms, particularly aragonite producers such as pteropods. This work seeks to set a benchmark analysis of pteropod shell properties and variability using nanoindentation and electron microscopy to measure the structural and mechanical properties of Subantarctic pteropod shells (Limacina helicina antarctica) collected in 1998 and 2007. The 1998 shells were collected by a sediment trap deployed at 2000 m, 47°S, 142°E, and the 2007 shells were collected using nets from mixed-layer waters in the region (44°–54°S, 140°–155°E). Transmission electron microscopy revealed that the shells are composed of a polycrystalline structure, and no obvious porosity was visible. The hardness and modulus of the shells were measured using shell cross-section nanoindentation, across various regions of the shell from the inner to outer whorl. No change in mechanical properties was found with respect to the region of the shell cross-section probed. There was no statistically significant difference in the mean modulus or hardness of the shells between the 1998 and 2007 data sets. No major changes in the mechanical properties of these pteropod shells were detected between the 1998 and 2007 data sets, and we discuss the possible biases in the sampling techniques in complicating our analysis. However, quantifying the mechanical properties and microstructure of calcified may still provide insights into the responses of calcification to environmental changes, such as ocean acidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bednaršek N, Tarling GA, Bakker DCE, Fielding S, Jones EM, Venables HJ, Ward P, Kuzirian A, Lézé B, Feely RA, Murphy EJ (2012a) Extensive dissolution of live pteropods in the Southern Ocean. Nat Geosci 5:881–885. doi:10.1038/NGEO1635

    Article  Google Scholar 

  • Bednaršek N, Tarling GA, Bakker DCE, Fielding S, Cohen A, Kuzirian A, McCorkle D, Leze B, Montagna R (2012b) Description and quantification of pteropod shell dissolution: a sensitive bioindicator of ocean acidification. Glob Change Biol 18:2378–2388. doi:10.1111/j.1365-2486.2012.02668.x

    Article  Google Scholar 

  • Bijma J, Spero HJ, Lea DW (1999) Reassessing foraminiferal stable isotope geochemistry: impact of the oceanic carbonate system (experimental results). In: Fisher G, Wefer G (eds) Use of proxies in paleoceanography. Springer, Berlin, pp 489–512

    Chapter  Google Scholar 

  • Bijma J, Hönisch B, Zeebe RE (2002) Impact of the ocean carbonate chemistry on living foraminiferal shell weight. Geochem Geophys 3:1064. doi:10.1029/2002GC000388

    Google Scholar 

  • Borjes AV, Tilbrook B, Metzl N, Lenton A, Delille B (2008) Inter-annual variability of the carbon dioxide oceanic sink south of Tasmania. Biogeosciences 5:141–151. doi:10.5194/bg-5-141-2008

    Article  Google Scholar 

  • Bray S, Trull T, Manganini S (2000) SAZ project moored sediment traps: results of the 1997–2007 deployments. Antarctic cooperative research centre report no. 15, Hobart, Tasmania, Australia

  • Bruet BJF, Qi HJ, Boyce MC, Panas R, Tai K, Frick L, Ortiz C (2005) Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus. J Mater Res 20:2400–2419. doi:10.1557/JMR.2005.0273

    Article  CAS  Google Scholar 

  • Comeau S, Gorsky G, Jeffree R, Teyssie JL, Gattuso JP (2009) Impact of ocean acidification on a key Arctic pelagic mollusc (Limacina helicina). Biogeosciences 6:1877–1882. doi:10.5194/bg-6-1877-2009

    Article  CAS  Google Scholar 

  • Comeau S, Alliouane S, Gattuso JP (2012) Effects of ocean acidifcation on overwintering juvenile Arctic pteropods Limacina helicina. Mar Ecol Prog Ser 456:279–284

    Article  CAS  Google Scholar 

  • Doerner MF, Nix WD (1986) A method for interpreting the data from depth-sensing indentation instruments. J Mater Res 1:601–609. doi:10.1557/JMR.1986.0601

    Article  Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Mar Sci 1:169–192. doi:10.1146/annurev.marine.010908.163834

    Article  Google Scholar 

  • Espinosa HD, Juster AL, Latourte FJ, Loh OY, Gregoire D, Zavattieri PD (2011) Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials. Nat Commun 2:173. doi:10.1038/ncomms1172

    Article  PubMed  Google Scholar 

  • Fabry VJ, McClintock JB, Mathis JT, Grebmeier JM (2009) Ocean acidification at high latitudes: the bellwether. Oceanography 22:160–171. doi:10.5670/oceanog.2009.105

    Article  Google Scholar 

  • Fischer-Cripps AC (2004) Nanoindentation. Springer, New York

    Book  Google Scholar 

  • Gattuso J-P, Buddemeier R (2000) Calcification and CO2. Nature 407:311–312. doi:10.1038/35030280

    Article  CAS  PubMed  Google Scholar 

  • Gattuso J-P, Frankignoulle M, Bourge I, Romaine S, Buddemeier R (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Glob Planet Change 18:37–46. doi:10.1016/S0921-8181(98)00035-6

    Article  Google Scholar 

  • Harbison GR, Gilmer RW (1986) Effects of animal behaviour on sediment trap collections: implications for the calculations of aragonite fluxes. Deep Sea Res 33:1017–1024. doi:10.1016/0198-0149(86)90027-0

    Article  CAS  Google Scholar 

  • Hare PE, Abelson PH (1964) Proteins in mollusk shells. Report of the Director, Geophysics Laboratory, Carnegie Institution, Washington 63:267–270

  • Howard WR, Roberts D, Moy AD, Lindsay MCM, Hopcroft RR, Trull TW, Bray SG (2011) Distribution, abundance and seasonal flux of pteropods in the Sub-Antarctic Zone. Deep Sea Res II 58:2293–2300. doi:10.1016/j.dsr2.2011.05.031

    Article  Google Scholar 

  • Hunt BPV, Pakhomov EA, Hosie GW, Sigel V, Ward P, Bernard K (2008) Pteropods in Southern Ocean ecosystems. Prog Oceanogr 78:193–221. doi:10.1016/j.pocean.2008.06.001

    Article  Google Scholar 

  • Katti KS, Mohanty B, Katti DR (2006) Nanomechanical properties of nacre. J Mater Res 21:1237–1242. doi:10.1557/jmr.2006.0147

    Article  CAS  Google Scholar 

  • Kleypas J, Buddemeier R, Archer D, Gattuso J, Langdon C, Opdyke B (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120. doi:10.1126/science.284.5411.118

    Article  CAS  PubMed  Google Scholar 

  • Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res Oceans (1978–2012). doi:10.1029/2004JC002576

    Google Scholar 

  • Lenton A, Tilbrook B, Law RM, Bakker D, Doney SC, Gruber N, Ishii M, Hoppema M, Lovenduski NS, Matear RJ, McNeil BI, Metzl N, Mikaloff Fletcher SE, Monteiro PMS, Rödenbeck C, Sweeney C, Takahashi T (2013) Sea-air CO2 fluxes in the Southern Ocean for the period 1990–2009. Biogeosciences 10:4037–4054. doi:10.5194/bg-10-4037-2013

    Article  Google Scholar 

  • Lischka S, Riebesell U (2012) Synergistic effects of ocean acidification and warming on overwintering pteropods in the Arctic. Glob Change Biol 18:3517–3528. doi:10.1111/gcb.12020

    Article  Google Scholar 

  • Lourey MJ, Trull TW (2001) Seasonal nutrient depletion and carbon export in the Subantarctic and Polar Frontal zones of the Southern Ocean south of Australia. J Geophys Res 106:31463–31487. doi:10.1029/2000JC000287

    Article  CAS  Google Scholar 

  • Manno C, Sandrini S, Tositti L, Accornero A (2007) First stages of degradation of Limacina helicina shells observed above the aragonite chemical lysocline in Terra Nova Bay (Antarctica). J Mar Syst 68:91–102. doi:10.1016/j.jmarsys.2006.11.002

    Article  Google Scholar 

  • Manno C, Morata N, Primicerio R (2012) Limacina retroversa’s response to combined effects of ocean acidification and sea water freshening. Estuar Coast Shelf Sci 113:163–171. doi:10.1016/j.ecss.2012.07.019

    Article  CAS  Google Scholar 

  • McNeil BI, Matear RJ (2008) Southern Ocean acidification: a tipping point at 450-ppm atmospheric CO2. Proc Natl Acad Sci 105:18860–18864. doi:10.1073/pnas.0806318105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Midorikawa T, Inoue HY, Ishii M, Sasano D, Kosugi N, Hashida G, Nakaoka S, Suzuki T (2012) Decreasing pH trend estimated from 35-year time series of carbonate parameters in the Pacific sector of the Southern Ocean in summer. Deep Sea Res I 61:131–139. doi:10.1016/j.dsr.2011.12.003

    Article  CAS  Google Scholar 

  • Moy AD, Howard WR, Trull TW, Bray S (2009) Reduced calcification in modern Southern Ocean planktonic foraminifera. Nature Geosci 2:276–280. doi:10.1038/ngeo460

    Article  CAS  Google Scholar 

  • Mucci J (1983) The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. Am J Sci 283:780–799. doi:10.2475/ajs.283.7.780

    Article  CAS  Google Scholar 

  • Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583. doi:10.1557/JMR.1992.1564

    Article  CAS  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686. doi:10.1038/nature04095

    Article  CAS  PubMed  Google Scholar 

  • Pommeranz T, Hermann C, Kühn A (1982) Mouth angle of the rectangular midwater trawl (RMT1+8) during paying out and hauling. Meeresforschung 29:267–274

    Google Scholar 

  • Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FMM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–366. doi:10.1038/35030078

    Article  CAS  PubMed  Google Scholar 

  • Rintoul SR, Bullister JL (1999) A late winter hydrographic section from Tasmania to Antarctica. Deep Sea Res I 46:1417–1454. doi:10.1016/S0967-0637(99)00013-8

    Article  Google Scholar 

  • Roberts D, Howard WR, Moy AD, Roberts JL, Trull TW, Bray SG, Hopcroft RR (2011) Interannual pteropod variability in sediment traps deployed above and below the aragonite saturation horizon in the Sub-Antarctic Southern Ocean. Polar Biol 31:1739–1750. doi:10.1007/s00300-011-1024-z

    Article  Google Scholar 

  • Roe HSJ, AdeC Baker, Carson RM, Wild R, Shale DM (1980) Behaviour of the Institute of Oceanographic Science’s rectangular midwater trawls: theoretical aspects and experimental observations. Mar Biol 56:247–259. doi:10.1007/BF00645349

    Article  Google Scholar 

  • Sato-Okoshi W, Okoshi K, Sasaki H, Akiha F (2010) Shell structure of two polar pelagic molluscs, Arctic Limacina helicina and Antarctic Limacina helicina antarctica forma antarctica. Polar Biol 33:1577–1583. doi:10.1007/s00300-010-0849-1

    Article  Google Scholar 

  • Scurr D, Eichhorn SJ (2006) Analysis of local deformation in indented Ensis Siliqua mollusk shells using Raman spectroscopy. J Mater Res 21:3099–3108. doi:10.1557/jmr.2006.0382

    Article  CAS  Google Scholar 

  • Spero HJ, Bijma J, Lea DW, Bemis BE (1997) Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390:497–500. doi:10.1038/37333

    Article  CAS  Google Scholar 

  • Teniswood CMH, Roberts D, Howard WR, Bradby JE (2013) A quantitative assessment of the mechanical strength of the polar pteropod Limacina helicina antarctica shell. ICES J Mar Sci 70:1499–1505. doi:10.1093/icesjms/fst100

    Article  Google Scholar 

  • Trull T, Bray S, Manganini S, Honjo S, Francois R (2001) Moored sediment trap measurements of carbon export in the Sub-Antarctic and Polar Frontal zones of the Southern Ocean, south of Australia. J Geophys Res 106:31489–31510. doi:10.1029/2000JC000308

    Article  CAS  Google Scholar 

  • Uthicke S, Momigliano P, Fabricius KE (2013) High risk of extinction of benthic foraminifera in this century due to ocean acidification. Sci Rep. doi:10.1038/srep01769

    PubMed Central  Google Scholar 

  • Zhang T, Yurong M, Chen K, Yurong M, Chen K, Kunz M, Tamura N, Qiang M, Xu J, Qi L (2011) Structure and mechanical properties of a pteropod shell consisting of interlocked helical aragonite nanofibers. Angew Chem 123:10545–10549. doi:10.1002/anie.201103407

    Article  Google Scholar 

  • Zondervan I, Zeebe RE, Rost B, Riebesell U (2001) Decreasing marine biogenic calcification: a negative feedback on rising atmospheric pCO2. Glob Biogeochem Cycles 15:507–516. doi:10.1029/2000GB001321

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. Thomas Trull for the sediment trap samples, which was supported by the Australian Government through the Department of Industry Cooperative Research Centres Program, the Australian Antarctic Sciences program (AAS #1156) and the Australian Marine National Facility. The SAZ-Sense voyage was supported by the Australian Government through the Department of Climate Change, the Australian Cooperative Research Centres Program and the Australian Antarctic Division (AAS Grant #2720). The authors thank Dr. Karsten Goemann and Dr. Sandrin Feig of the Electron Scanning Facility at the Central Science Laboratory, University of Tasmania, for their assistance with the electron microscopy, the ANFF (ACT Node) for use of the FIB, and Dr. Simon Wotherspoon of the Institute for Marine and Antarctic Studies, University of Tasmania, for assistance with the statistical analysis. JEB is funded by an Australian Research Council Future Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara M. H. Teniswood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teniswood, C.M.H., Roberts, D., Howard, W.R. et al. Microstructural shell strength of the Subantarctic pteropod Limacina helicina antarctica . Polar Biol 39, 1643–1652 (2016). https://doi.org/10.1007/s00300-016-1888-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-016-1888-z

Keywords

Navigation