Skip to main content
Log in

Lichen photobiont diversity and selectivity at the southern limit of the maritime Antarctic region (Coal Nunatak, Alexander Island)

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Antarctic ice-free inland sites provide a unique perspective on the strategies coevolving organisms have developed for survival at the limits of life. Here, we provide the first combined description of the ecological and genetic diversity of lichen photobionts colonising an isolated Antarctic inland site, Coal Nunatak, on south-east Alexander Island (Antarctic Peninsula). Photobionts of 14 lichen species (42 samples), all belonging to the group of coccal green algae, representing the entire lichen community of Coal Nunatak were investigated using the internal transcribed spacer region (ITS) of the nuclear ribosomal DNA. The study attempted to address the hypothesis that mycobiont selectivity for the photobiont partner is lower in more extreme environments. This hypothesis did not appear to hold true for the entire lichen community except one species. Another aspect focuses on the relevance of the reproduction modus concerning the distribution of photobiont haplotypes in the lichen community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Beck A (1999) Photobiont inventory of a lichen community growing on heavy-metal-rich rock. Lichenologist 31:501–510

    Article  Google Scholar 

  • Beck A, Kasalicky G, Rambold G (2002) Myco-photobiontal selection in a Mediterranean cryptogam community with Fulgensia fulgida. New Phytol 153:317–326

    Article  Google Scholar 

  • Bednark-Ochyra H, Vána J, Ochyra L, Smith RIL (2000) The liverwort flora of Antarctica. Polish Academy of Sciences, Cracow

    Google Scholar 

  • Brinkmann M (2002) Genetische Diversität von Bionten in der Flechtensymbiose. Diploma thesis, University of Duesseldorf

  • Brinkmann M, Pearce DA, Convey P, Ott S (2007) The cyanobacterial community of polygon soils at an inland Antarctic nunatak. Polar Biol 30:1505–1511

    Article  Google Scholar 

  • British Antarctic Survey (2004) Antarctica, 1:10,000,000 scale map. BAS (Misc) 11. British Antarctic Survey, Cambridge

    Google Scholar 

  • Burn RW (1983) Geology of the Le May Group, Alexander Island. Br Antarct Surv Sci Rep 109:1–64

    Google Scholar 

  • Convey P (2013) Antarctic ecosystems. In: Levin SA (ed) Encyclopedia of biodiversity, vol 1, 2nd edn. Elsevier, San Diego, pp 179–188

    Chapter  Google Scholar 

  • Convey P, Smith RIL (1997) The terrestrial arthropod fauna and its habitats in northern Marguerite Bay and Alexander Island, maritime Antarctic. Antarct Sci 9:12–26

    Article  Google Scholar 

  • Engelen (2008) Antarktische Nunatakker als Modell-Ökosystem für initiale Besiedlungsprozesse und Artendiversität in nacheiszeitlichen Perioden. Ph.D. thesis, University of Duesseldorf

  • Engelen A, Convey P, Hodgson DA, Worland MR, Ott S (2008) Soil properties of an Antarctic inland site: implications for ecosystem development. Polar Biol 31:1453–1460

    Article  Google Scholar 

  • Engelen A, Convey P, Ott S (2010) Life history strategy of Lepraria borealis at an Antarctic inland site, Coal Nunatak. Lichenologist 42(3):339–346

    Article  Google Scholar 

  • Fernández-Mendoza F, Domaschke S, García MÁ, Jordan P, Martín M, Printzen C (2011) Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata. Mol Ecol 20:1208–1232

    Article  PubMed  Google Scholar 

  • Feuerer T, Hawksworth DL (2007) Biodiversity of lichens, including a world-wide analysis of checklist data based on Takhtajan’s floristic regions. Biodivers Conserv 16:85–98

    Article  Google Scholar 

  • Friedl T (1987) Aspects of thallus development in the parasitic lichen Diploschistes muscorum. In: Peveling E (ed) Progress and problems in lichenology in the eighties. Bibliotheca Lichenologica. Cramer, Berlin, Stuttgart, pp 95–97

    Google Scholar 

  • Friedl T (1996) Evolution of the polyphyletic genus Pleurastrum (Chlorophyta): inferences from nuclear-encoded DNA sequences and motile cell ultrastructure. Phycologia 35:456–469

    Article  Google Scholar 

  • Friedl T, Rokitta C (1997) Species relationships in the lichen genus Trebouxia (Chlorophyta, Trebouxiophyceae): molecular phylogenetic analyses of nuclear-encoded large subunit rRNA gene sequences. Symbiosis 23:125–148

    CAS  Google Scholar 

  • Galun M (1988) Lichenization. In: Galun M (ed) Handbook of lichenology II. CRC Press, Boca Raton, pp 153–169

    Google Scholar 

  • Galun M, Bubrick P (1984) Physiological interactions between the partners of the lichen symbiosis. In: Linskens HF, Heslop-Harrison J (eds) Cellular interactions. Encyclopedia of plant physiology. Springer, Berlin, pp 362–401

    Chapter  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa M, Kishino H, Yano TA (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    Article  CAS  PubMed  Google Scholar 

  • Hawksworth DL (1988) The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Bot J Linn Soc 96:3–20

    Article  Google Scholar 

  • Helms G, Friedl T, Rambold G, Mayrhofer H (2001) Identification of photobionts from lichen family Physciaceae using algal-specific ITS rDNA sequencing. Lichenologist 33:73–86

    Article  Google Scholar 

  • Kappen L (1993) Plant activity under snow and ice, with particular reference to lichens. Arctic 46(4):297–302

    Article  Google Scholar 

  • Kroken S, Taylor JW (2000) Phylogenetic species, reproductive mode, and specificity of the green Alga Trebouxia forming lichens with the fungal genus Letharia. Bryologist 103:645–650

    Article  CAS  Google Scholar 

  • Langohr J (2004) Genetische Diversität der Photobionten der Gattung Usnea subgenus Neuropogon in der Antarktis. Diploma thesis, University of Duesseldorf

  • Meeßen J, Ott S (2013) Recognition mechanisms during the pre-contact state of lichens: I. Mycobiont-photobiont interactions of the mycobiont of Fulgensia bracteata. Symbiosis 59(3):121–130

    Article  Google Scholar 

  • Meeßen J, Eppenstein S, Ott S (2013) Recognition mechanisms during the pre-contact state of lichens: II. Influence of algal exudates and ribitol on the response of the mycobiont of Fulgensia bracteata. Symbiosis 59(3):131–143

    Article  Google Scholar 

  • Neuburg M (2007) Genetische Diversität von Photobionten aus Flechten der kontinentalen Antarktis. Diploma thesis, University of Duesseldorf

  • Ochyra R (1998) The moss flora of King George Island, Antarctica. Polish Academy of Sciences, Cracow

    Google Scholar 

  • Ott S (1987) Reproductive strategies in lichens. Bibl Lichenol 25:81–93

    Google Scholar 

  • Ott S, Meier T, Jahns HM (1995) Development, regeneration and parasitic interactions between the lichens Fulgensia bracteata and Toninia caeruleonigricans. Can J Bot 73:595–602

    Article  Google Scholar 

  • Øvstedal DO, Smith RIL (2001) Lichens of Antarctica and South Georgia. A guide to their identification and ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Peck LS, Convey P, Barnes DKA (2006) Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biol Rev 81:75–109

    Article  PubMed  Google Scholar 

  • Pérez-Ortega S, Ortiz-Álvarez R, Green ATG, de Los Ríos A (2012) Lichen myco- and photobiont diversity and their relationships at the edge of life (McMurdo Dry Valleys, Antarctica). FEMS Microbiol Ecol 82(2):429–448

    Article  PubMed  Google Scholar 

  • Peveling E (1988) Beziehungen zwischen den Symbiosepartnern in Flechten. Naturwissenschaften 75:77–86

    Article  Google Scholar 

  • Piercey-Normore MD, DePriest PT (2001) Algal switching among lichen symbioses. Am J Bot 8:1490–1498

    Article  Google Scholar 

  • Rambold G, Friedl T, Beck A (1998) Photobionts in lichens: Possible indicators of phylogenetic relationships? Bryologist 101:392–397

    Article  Google Scholar 

  • Romeike J, Friedl T, Helms G, Ott S (2002) Genetic diversity of algal and fungal partners in four species of Umbilicaria (lichenized ascomycetes) along a transect of the Antarctic Peninsula. Mol Biol Evol 19:1209–1217

    Article  CAS  PubMed  Google Scholar 

  • Sadowsky A, Ott S (2012) Photosynthetic symbionts in Antarctic terrestrial ecosystems: the physiological response of lichen photobionts to drought and cold. Symbiosis 58:81–90

    Article  Google Scholar 

  • Sadowsky A, Ott S (2016) Symbiosis as a successful strategy in continental Antarctica: performance and protection of Trebouxia photosystem II in relation to lichen pigmentation. Polar Biol 39(1):139–151

    Article  Google Scholar 

  • Schaper T, Ott S (2003) Photobiont selectivity and interspecific interactions in lichen communities. I. Culture experiments with the mycobiont Fulgensia bracteata. Plant Biol 5:441–450

    Article  Google Scholar 

  • Seymour FA, Crittenden PD, Dyer PS (2005) Sex in the extremes: lichen-forming fungi. Mycologist 19(02):51–58

    Article  Google Scholar 

  • Siegesmund M (2005) Phylogenetische Analyse der evolutionären Beziehungen von Flechtensymbionten in der Antarktis. Diploma thesis, University of Duesseldorf

  • Smith RIL (1988) Bryophyte oases in ablation valleys on Alexander Island, Antarctica. Bryologist 91:45–50

    Article  Google Scholar 

  • Tschermak-Woess E (1988) The algal partner. In: Galun M (ed) CRC handbook of lichenology I. CRC Press, Boca Raton, pp 39–92

    Google Scholar 

  • White TJ, Burns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T, Orlando FL (eds) PCR protocols. A guide to methods and applications. Academic Press, London, pp 315–322

    Google Scholar 

  • Yahr R, Vilgalys R, DePriest PT (2004) Strong fungal specificity and selectivity for algal symbionts in Florida scrub Cladonia lichens. Mol Ecol 13:3367–3378

    Article  CAS  PubMed  Google Scholar 

  • Yahr R, Vilgalys R, DePriest PT (2006) Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytol 171:847–860

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the British Antarctic Survey for logistic support allowing access to the study sites on Alexander Island and its staff at Rothera Research Station for their support. We are especially thankful to the BAS field assistants Neil Stevenson and Robin Jarvis for their kind and invaluable technical support in the field. Thanks are due to Nora Wirtz, Dag Øvstedal and Hannes Hertel for determination of the lichen species. This project was funded by a Grant of the Deutsche Forschungsgemeinschaft (DFG) to SO (Ot96/10-1/2) as part of the priority program SPP 1158 and the Duesseldorf Enterpreneurs Foundation. PC is supported by NERC core funding to the BAS Ecosystems programme. This paper also forms an output of the SCAR AntEco and AnT-ERA scientific programmes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sieglinde Ott.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engelen, A., Convey, P., Popa, O. et al. Lichen photobiont diversity and selectivity at the southern limit of the maritime Antarctic region (Coal Nunatak, Alexander Island). Polar Biol 39, 2403–2410 (2016). https://doi.org/10.1007/s00300-016-1915-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-016-1915-0

Keywords

Navigation