Skip to main content
Log in

Isolation of fungi associated with macroalgae from maritime Antarctica and their production of agarolytic and carrageenolytic activities

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Antarctica includes different pristine environments dominated by extremophile microbial communities. Despite the ecological role importance of Antarctic microorganisms, some of them can represent interesting sources of bioproducts with potential industrial application. In the present study, we analysed the agarolytic and carrageenolytic activities of algicolous fungi from seven different macroalgal species of maritime Antarctica. After a selective isolation process, 44 fungal isolates were recovered and identified by biology molecular methods as belonging to the genera Antarctomyces, Beauveria, Cladosporium, Coprinellus, Doratomyces, Leucosporidiella, Metschnikowia, Penicillium, and Pseudogymnoascus. Rhodophyta macroalgae sheltered the fungi with the best potential for agarolytic and carrageenolytic activities. Penicillium chrysogenum, Penicillium sp., and Cladosporium sp. 2 simultaneously displayed the best carrageenolytic and agarolytic activities. Our results indicated that the Antarctic macroalgae shelter saprobe fungi that produce enzymes with the potential to degrade algal biomass and might release essential nutrients into the Antarctic Ocean. These agarolytic and/or carrageenolytic Antarctic fungi may also be useful in further industrial processes involving the biological extraction of agar and carrageenan, or their byproducts, to be used as substrates of third-generation bioethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amsler CD, Amsler MO, McClintock JB, Baker BJ (2009) Filamentous algal endophytes in macrophytic Antarctic algae: prevalence in hosts and palatability to mesoherbivores. Phycologia 48:324–334

    Article  Google Scholar 

  • Arenz BE, Blanchette RA (2011) Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea Region and McMurdo Dry Valleys. Soil Biol Biochem 43(2):308–315

    Article  CAS  Google Scholar 

  • Arenz BE, Held BW, Jurgens JA, Farrell RL, Blanchette RA (2006) Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biol Biochem 38:3057–3064

    Article  CAS  Google Scholar 

  • Armisén R, Galatas F, Hispanagar AS (2000) agar. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. Woodhead Publishing, Cambridge, pp 21–40

    Google Scholar 

  • Bensch K, Groenewald JZ, Dijksterhuis J, Starink-Willemse M, Andersen B, Summerell BA et al (2010) Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales). Stud Mycol 67:1–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bridge PD, Spooner BM (2012) Non-lichenized Antarctic fungi: transient visitors or members of a cryptic ecosystem? Fungal Ecol 5:381–394

    Article  Google Scholar 

  • Bugni TS, Ireland CM (2004) Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep 21:143–163

    Article  CAS  PubMed  Google Scholar 

  • Chauhan PS, Saxena A (2016) Bacterial carrageenases: an overview of production and biotechnological applications. 3 Biotech 6:146

    Article  PubMed  PubMed Central  Google Scholar 

  • De García V, Brizzio S, Libkind D, Buzzini P, Van Broock M (2007) Biodiversity of cold-adapted yeasts from glacial meltwater rivers in Patagonia, Argentina. FEMS Microb Ecol 59:331–341

    Article  Google Scholar 

  • de García V, Coelho MA, Maia TM et al (2015) Sex in the cold: taxonomic reorganization of psychrotolerant yeasts in the order Leucosporidiales. FEMS Yeast Res 15:fov019

    Article  PubMed  Google Scholar 

  • de Menezes GCA, Godinho VM, Porto BA, Gonçalves VN, Rosa LH (2016) Antarctomyces pellizariae sp. nov., a new, endemic, blue, snow resident psychrophilic ascomycete fungus from Antarctica. Extremophiles 21:259–269

    Article  PubMed  Google Scholar 

  • Fell JW, Scorzetti G, Connell L, Craig S (2006) Biodiversity of micro-eukaryotes in Antarctic Dry Valley soils with < 5% soil moisture. Soil Biol Biochem 38:3107–3119

    Article  CAS  Google Scholar 

  • Fu XT, Kim SM (2010) Agarase: review of major sources, categories, purification method, enzyme characteristics and applications. Mar Drugs 8:200–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furbino LE, Godinho VM, Santiago IF et al (2014) Diversity patterns, ecology and biological activities of fungal communities associated with the endemic macroalgae across the Antarctic Peninsula. Microb Ecol 67:775–787

    Article  PubMed  Google Scholar 

  • Gerday C, Aittaleb M, Bentahir M et al (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 18:103–107

    Article  CAS  PubMed  Google Scholar 

  • Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Godinho VM, Furbino LE, Santiago IF et al (2013) Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME 7:1434–1451

    Article  CAS  Google Scholar 

  • Godinho VM, Gonçalves VN, Santiago IF et al (2015) Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica. Extremophiles 19:585–596

    Article  PubMed  Google Scholar 

  • Gonçalves VN, Vaz ABM, Rosa CA, Rosa LH (2012) Diversity and distribution of fungal communities in lakes of Antarctica. FEMS Microbiol Ecol 82:459–471

    Article  PubMed  Google Scholar 

  • Gonçalves VN, Campos LS, Melo IS, Pellizari VH, Rosa CA, Rosa LH (2013) Penicillium solitum: a mesophilic, psychrotolerant fungus present in marine sediments from Antarctica. Polar Biol 36:1823–1831

    Article  Google Scholar 

  • Gonçalves VN, Carvalho CR, Johann S et al (2015) Antibacterial, antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica. Polar Biol 38:1143–1152

    Article  Google Scholar 

  • Gradisar H, Kern S, Friedrich J (2000) Keratinase of Doratomyces microspores. Appl Microbiol Biotechnol 53:196–200

    Article  CAS  PubMed  Google Scholar 

  • Graigie JS (1990) Cell walls. In: Cole KM, Sheath RG (eds) Biology of red algae. Cambridge University Press, Cambridge, pp 221–258

    Google Scholar 

  • Guiry MD, Guiry GM (2016) AlgaeBase. Worldwide electronic publication. National University of Ireland, Galway. http://www.algaebase.org. Accessed 11 Feb 2016

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi. CABI, Wallingford

    Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout T (2011) The yeast, a Taxonomia study. Elsevier, Amsterdam

    Google Scholar 

  • Lachance MA, Bowles JM, Starmer WT, Barker JSF (1999) Kodamaea kakaduensis and Candida tolerans, two new yeast species from Australian Hibiscus flowers. Can J Microbiol 45:172–177

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Kim YS, Um BH, Oh K (2013) Pretreatment of Laminaria japonica for bioethanol production with extremely low acid concentration. Renew Energ 54:196–200

    Article  CAS  Google Scholar 

  • Loque CP, Medeiros AO, Pellizzari FM, Oliveira EC, Rosa CA, Rosa LH (2010) Fungal community associated with marine macroalgae from Antarctica. Polar Biol 33:641–648

    Article  Google Scholar 

  • Márquez SS, Bills FG, Zabalgogeazcoa I (2008) Diversity and structure of the fungal endophytic assemblages from two sympatric coastal grasses. Fungal Divers 33:87–100

    Google Scholar 

  • Mendonça-Hagler LC, Hagler AN, Phaff HJ, Tredick J (1985) DNA relatedness among aquatic yeasts of the genus Metschnikowia and proposal of the species Metschnikowia australis com. nov. Can J Microbiol 31:905–909

    Article  PubMed  Google Scholar 

  • Mercantini R, Marsella R, Cervellati MC (1989) Keratinophilic fungi isolated from Antarctic soil. Mycopathologia 106:47–52

    Article  CAS  PubMed  Google Scholar 

  • Meyer GH, Morrow MB, Wyss O (1967) Bacteria, fungi and other biota in the vicinity of Mirny Observatory. Antarctic J US 2:248–251

    Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Necas J, Bartosikova L (2013) Carrageenan: a review. Vet Med 58:187–205

    Article  CAS  Google Scholar 

  • Oliveira EC, Absher TM, Pellizzari FM, Oliveira MC (2009) The seaweed flora of Admiralty Bay, King George Island, Antarctic. Polar Biol 32:1630–1647

    Article  Google Scholar 

  • Papenfuss GF (1964) Catalogue and bibliography of Antarctic and Sub-Antarctic benthic marine algae. In: Lee MO (ed) Bibliography of the Antarctic Seas. American Geophysical Union, Washington DC, pp 1–76

    Google Scholar 

  • Pellizzari F, Vélez-Rubio GM, Cristine-Silva M, Carranza A et al (2016) The seaweeds Myriogloea major Asensi (Chordariacea, Phaeophyceae) and Gayralia oxysperma (Kützing) KL Vinogradova ex Scagel et al. (Ulvophyceae, Chlorophyta): a case of range extension in the Southwestern Atlantic Ocean? Mar Biodivers 31:1–8

    Google Scholar 

  • Quartino ML, Boraso de Zaixso HE, Zaixso AL (2005) Biological and environmental characterization of marine macroalgal assemblages in Potter Cove, South Shetland Islands. Bot Mar 48:187–197

    Article  Google Scholar 

  • Redhead SA, Vilgalys R, Moncalvo JM, Johnson J, Hopple JS (2001) Coprinus Pers., and the disposition of Coprinus species sensu lato. Taxon 50:203–241

    Article  Google Scholar 

  • Ricker RW (1987) Taxonomy and biogeography of Macquarie Island seaweeds. British Museum Natural History, London

    Google Scholar 

  • Rosa LH, Vaz ABM, Caligiorne RB, Campolina S, Rosa CA (2009) Endophytic fungi associated with the Antarctic Grass Deschampsia antarctica Desv. (Poaceae). Polar Biol 32:161–167

    Article  Google Scholar 

  • Rosa LH, Vieira MLA, Santiago IF, Rosa CA (2010) Endophytic fungi community associated with the dicotyledonous plant Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in Antarctica. FEMS Microbiol Ecol 73:178–189

    CAS  PubMed  Google Scholar 

  • Ruisi S, Barreca D, Selbmann L, Zucconi L, Onofri S (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 6:127–141

    Article  Google Scholar 

  • Sampaio JP (2011) Leucosporidiella. In: Kurtzman CP, Fell JW, Boekhout T (eds) The Yeasts, a Taxonomic Study, 5th edn. Elsevier, Amsterdam, pp 1802–1806

    Google Scholar 

  • Samson RA, Houbraken J, Thrane U, Frisvad JC, Andersen B (2010) Food and Indoor Fungi. CBS-KNAW- Fungal Biodiversity Centre, Netherlands

    Google Scholar 

  • Santiago IF, Soares MA, Rosa CA, Rosa LH (2015) Lichensphere: a protected natural microhabitat of the non-lichenised fungal communities living in extreme environments of Antarctica. Extremophiles 19:1087–1097

    Article  PubMed  Google Scholar 

  • Santiago IF, Rosa CA, Rosa LH (2016) Endophytic symbiont yeasts associated with the Antarctic angiosperms Deschampsia antarctica and Colobanthus quitensis. Polar Biol 40:177–183

    Article  Google Scholar 

  • Solis MJL, Draeger S, Cruz TEED (2010) Marine-derived fungi from Kappaphycus alvarezii and K. striatum as potential causative agents of ice-ice disease in farmed seaweeds. Bot Mar 53:587–594

    Article  Google Scholar 

  • Stchigel AM, Cano J, MacCormack CW (2001) Antarctomyces psychrotrophicus gen. et sp. nov., a new ascomycete from Antarctica. Mycol Res 105:377–382

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  Google Scholar 

  • Thomas SE, Crozier JM, Aime C, Evans HC, Holmes KA (2008) Molecular characterization of fungal endophytic morphospecies associated with the indigenous forest tree, Theobroma gileri, in Ecuador. Mycol Res 112:852–860

    Article  CAS  PubMed  Google Scholar 

  • Tosi S, Casado B, Gerdol R, Caretta G (2002) Fungi isolated from Antarctic mosses. Polar Biol 25:262–268

    Google Scholar 

  • Vaz ABM, Rosa LH, Vieira MLA, Teixeira LCRS et al (2011) The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Braz J Microbiol 42:937–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira MLA, Hughes AFS, Gil VB et al (2011) Diversity and antimicrobial activities of the fungal endophyte community associated with the traditional Brazilian medicinal plant Solanum cernuum Vell. (Solanaceae). Can J Microbiol 58:54–66

    Article  PubMed  Google Scholar 

  • Wang J, Jiang X, Mou H, Guan H (2004) Anti-oxidation of agar oligosaccharides produced by agarase from a marine bacterium. J Appl Phycol 16:333–340

    Article  CAS  Google Scholar 

  • Wang QM, Yurkov AM, Göker M et al (2015) Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Stud Mycol 81:149–189

    Article  PubMed  Google Scholar 

  • White TJ, Bruns TD, Lee SB (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis NA, Gelfand D, Sninsky J (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Wiencke C, Clayton MN (2002) Antarctic Seaweeds. In: Wägele JW (ed) Synopses of the Antarctic benthos. ARG, Gantner Verlag KG, Ruggell, pp 1–239

    Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from CNPq, CAPES, PROANTAR 407230/2013-0 and 407588/2013-2, INCT Criosfera, FAPEMIG, and PRPq-UFMG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz H. Rosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furbino, L.E., Pellizzari, F.M., Neto, P.C. et al. Isolation of fungi associated with macroalgae from maritime Antarctica and their production of agarolytic and carrageenolytic activities. Polar Biol 41, 527–535 (2018). https://doi.org/10.1007/s00300-017-2213-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-017-2213-1

Keywords

Navigation