Skip to main content
Log in

T2 relaxation time analysis in patients with multiple sclerosis: correlation with magnetization transfer ratio

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The aim of the current study was to perform T2 relaxation time measurements in multiple sclerosis (MS) patients and correlate them with magnetization transfer ratio (MTR) measurements, in order to investigate in more detail the various histopathological changes that occur in lesions and normal-appearing white matter (NAWM). A total number of 291 measurements of MTR and T2 relaxation times were performed in 13 MS patients and 10 age-matched healthy volunteers. Measurements concerned MS plaques (105), NAWM (80), and “dirty” white matter (DWM; 30), evenly divided between the MS patients, and normal white matter (NWM; 76) in the healthy volunteers. Biexponential T2 relaxation-time analysis was performed, and also possible linearity between MTR and mean T2 relaxation times was evaluated using linear regression analysis in all subgroups. Biexponential relaxation was more pronounced in “black-hole” lesions (16.6%) and homogeneous enhancing plaques (10%), whereas DWM, NAWM, and mildly hypointense lesions presented biexponential behavior with a lower frequency(6.6, 5, and 3.1%, respectively). Non-enhancing isointense lesions and normal white matter did not reveal any biexponentional behavior. Linear regression analysis between monoexponential T2 relaxation time and MTR measurements demonstrated excellent correlation for DWM(r=−0.78, p<0.0001), very good correlation for black-hole lesions(r=-0.71, p=0.002), good correlation for isointense lesions(r=−0.60, p=0.005), moderate correlation for mildly hypointense lesions(r=−0.34, p=0.007), and non-significant correlation for homogeneous enhancing plaques, NAWM, and NWM. Biexponential T2 relaxation-time behavior is seen in only very few lesions (mainly on plaques with high degree of demyelination and axonal loss). A strong correlation between MTR and monoexponential T2 values was found in regions where either inflammation or demyelination predominates; however, when both pathological conditions coexist, this linear relationship is lost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Jackson JA, Leake DR, Schneiders NJ, Rolak LA, Kelley GR, Ford JJ, Appel SH, Bryan RN (1985) Magnetic resonance imaging in multiple sclerosis: results in 32 cases. Am J Neuroradiol 6:171–176

    CAS  PubMed  Google Scholar 

  2. van der Knaap MS, Valk J (1995) Multiple sclerosis. In: van der Knaap MS, Valk J Magnetic resonance of myelin, myelination, and myelin disorders, 2nd edn. Springer, Berlin Heidelberg New York, pp 296–313

  3. Fazekas F, Barkhof F, Filippi M, Grossman RI, Li DK, McDonald WI, McFarland HF, Paty DW, Simon JH, Wolinsky JS, Miller DH (1999) The contribution of magnetic resonance imaging to the diagnosis of multiple sclerosis. Neurology 53:448–456

    CAS  PubMed  Google Scholar 

  4. Ormerod IE, Miller DH, McDonald WI, du Boulay EP, Rudge P, Kendall BE, Moseley IF, Johnson G, Tofts PS, Halliday AM et al. (1987) The role of NMR imaging in the assessment of multiple sclerosis and isolated neurological lesions: a quantitative study. Brain 110:1579–1616

    PubMed  Google Scholar 

  5. Bruck W, Bitsch A, Kolenda H, Bruck Y, Stiefel M, Lassmann H (1997) Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology. Ann Neurol 42:783–793

    CAS  PubMed  Google Scholar 

  6. Lucchinetti CF, Bruck W, Rodriguez M, Lassmann H (1996) Distinct patterns of multiple sclerosis pathology indicated heterogeneity in pathogenesis. Brain Pathol 6:259–274

    CAS  PubMed  Google Scholar 

  7. Filippi M, Campi A, Dousset V, Baratti C, Martinelli V, Canal N, Scotti G, Comi G (1996) A magnetization transfer imaging study of normal-appearing white matter in multiple sclerosis. Neurology 17:1041–1049

    Google Scholar 

  8. van Buchem MA, McGowan JC, Kolson DL, Polansky M, Grossman RI (1996) Quantitative volumetric magnetization transfer analysis in multiple sclerosis: estimation of macroscopic and microscopic disease burden. Magn Reson Med 36:632–636

    PubMed  Google Scholar 

  9. Gass A, Barker GJ, Kidd D, Thorpe JW, MacManus D, Brennan A, Tofts PS, Thompson AJ, McDonald WI, Miller DH (1994) Correlation of magnetization transfer ratio and clinical disability in multiple sclerosis. Ann Neurol 36:62–67

    CAS  PubMed  Google Scholar 

  10. Dousset V, Grossman RI, Ramer KN, Schnall MD, Young LH, Gonzalez-Scarano F (1992) Experimental allergic encephalomyelitis and multiple sclerosis: lesion characterization with magnetization transfer imaging. Radiology 182:483–491

    CAS  PubMed  Google Scholar 

  11. Tomiak MM, Rosenblum JD, Prager JM, Metz CE (1994) Magnetization transfer: a potential method to determine the age of multiple sclerosis lesions. Am J Neuroradiol 15:1569–1574

    CAS  PubMed  Google Scholar 

  12. van Waessberghe JHTM, van Walderveen MAA, de Groot C, Ravid R, Lycklama à Nijeholt GJ, Kamphorst W, Barkhof F (1998) Postmortem correlation between axonal loss, MTR, and hypersensitivity on T1SE in MS. Proc ISMRM 2:1334

    Google Scholar 

  13. Larsson HBW, Christiansen P, Zeeberg I, Henriksen O (1992) In-vivo evaluation of the reproducibility of T1 and T2 measured in the brain of patients with multiple sclerosis. Magn Reson Imaging 10:579–584

    CAS  PubMed  Google Scholar 

  14. Miller DH, Johnson G, Tofts PS, MacManus D, McDonald WI (1989) Precise relaxation time measurements of normal appearing white matter in inflammatory central nervous system disease. Magn Reson Med 11:331–336

    CAS  PubMed  Google Scholar 

  15. Armspach J, Gounot D, Rumbach L, Chambron J (1991) In-vivo determination of multiexponentional T2 relaxation times in the brains of patients with multiple sclerosis. Magn Reson Imaging 9:107–113

    CAS  PubMed  Google Scholar 

  16. Larsson HBW, Frederiksen J, Petersen J, Nordenbo A, Zeeberg I, Henriksen O, Olesen J (1989) Assessment of demyelination, edema and gliosis by in-vivo determination of T1 and T2 in the brain of patients with acute attack of multiple sclerosis. Magn Reson Med 11:337–348

    CAS  PubMed  Google Scholar 

  17. Kidd D, Barker GJ, Tofts PS, Gass A, Thompson AJ, McDonald WI, Miller DH (1997) The transverse magnetization decay characteristics of longstanding lesions and normal-appearing white matter in multiple sclerosis. J Neurol 244:125–130

    Article  CAS  PubMed  Google Scholar 

  18. Mackay AL, Whittall KP, Adler J, Li D, Paty D, Graeb D (1994) In-vivo visualization of myelin water in brain by magnetic resonance. Magn Reson Med 31:673–677

    CAS  PubMed  Google Scholar 

  19. Papanikolaou N, Maniatis V, Pappas J, Roussakis A, Efthimiadou R, Andreou J (2002) Biexponential T2 relaxation time analysis of the brain: correlation with magnetization transfer ratio. Invest Radiol 37:363–367

    Article  CAS  PubMed  Google Scholar 

  20. Poser CM, Paty DW, Scheinberg L, McDonald WI, Davis FA, Ebers GC, Johnson KP, Sibley WA, Silberberg DH, Tourtellotte WW (1983) New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 13:227–231

    CAS  PubMed  Google Scholar 

  21. Graumann R, Oppelt A, Stetter E (1986) Multiple spin-echo imaging with a 2D Fourier method. Magn Reson Med 3:707–710

    CAS  PubMed  Google Scholar 

  22. Nusbaum AO, Lu D, Tang CY, Atlas SW (2000) Quantitative diffusion measurements in focal multiple sclerosis lesions: correlations with appearance on TI-weighted MR images. Am J Roentgenol 175:821–825

    CAS  Google Scholar 

  23. Cercignani M, Inglese M, Pagani E, Comi G, Filippi M (2001) Mean diffusivity and fractional anisotropy histograms of patients with multiple sclerosis. Am J Neuroradiol 22:952–958

    CAS  PubMed  Google Scholar 

  24. Falini A, Calabrese G, Filippi M, Origgi D, Lipari S, Colombo B, Comi G, Scotti G (1998) Benign vs secondary-progressive multiple sclerosis: the potential role of proton MR spectroscopy in defining the nature of disability. Am J Neuroradiol 19:223–229

    CAS  PubMed  Google Scholar 

  25. Gareau PJ, Rutt BK, Karlik SJ, Mitchell JR (2000) Magnetization transfer and multicomponent T2 relaxation measurements with histopathologic correlation in an experimental model of MS. J Magn Reson Imaging 11:586–595

    Article  CAS  PubMed  Google Scholar 

  26. Graham SJ, Sanchev PL, Bronskil MJ (1996) Criteria for analysis of multicomponent tissue T2 relaxation data. Magn Reson Med 35:370–378

    CAS  PubMed  Google Scholar 

  27. Poon CS, Henkelman RM (1992) Practical T2 quantitation for clinical applications. J Magn Reson Imaging 2:541–553

    CAS  PubMed  Google Scholar 

  28. Vavasour IM, Whittall KP, MacKay AL, Li DK, Vorobeychik G, Paty DW (1998) A comparison between magnetization transfer ratios and myelin water percentages in normals and multiple sclerosis patients. Magn Reson Med 40:763–768

    CAS  PubMed  Google Scholar 

  29. Barnes D, McDonald WI, Johnson G, Tofts P, Landon D (1987) Quantitative nuclear magnetic resonance imaging: characterization of experimental cerebral oedema. J Neurol Neurosurg Psychiatry 50:25–133

    Google Scholar 

  30. Naruse S, Horikawa Y, Tanaka C, Hirakawa K, Nishikawa H, Yoshizaki K (1982) Proton nuclear magnetic resonance studies on brain edema. J Neurosurg 56:747–752

    CAS  PubMed  Google Scholar 

  31. Loevner LA, Grossman RI, Cohen JA, Lexa FJ, Kessler D, Kolson DL (1995) Microscopic disease in normal-appearing white matter on conventional MR images in patients with multiple sclerosis: assessment with magnetization transfer ratio measurements. Radiology 196:511–515

    CAS  PubMed  Google Scholar 

  32. Barkhof F, McGowan JC, van Waesberghe JH, Grossman RI (1998) Hypointense multiple sclerosis lesions on T1-weighted spin-echo magnetic resonance images: their contribution in understanding multiple sclerosis evolution. J Neurol Neurosurg Psychiatry 64 (Suppl 1):S77–S79

    PubMed  Google Scholar 

  33. Loevner LA, Grossman RI, McGowan JC, Ramer KN, Cohen JA (1995) Characterization of multiple sclerosis plaques with T1-weighted MR and quantitative magnetization transfer. Am J Neuroradiol 16:1473–1479

    CAS  PubMed  Google Scholar 

  34. Stanisz GJ, Kecojevic A, Bronskill MJ, Henkelman RM (1999) Characterizing white matter with magnetization transfer and T2. Magn Reson Med 42:1128–1136

    Article  CAS  PubMed  Google Scholar 

  35. Barbosa S, Blumhardt LD, Roberts N, Lock T, Edwards RH (1994) Magnetic resonance relaxation time mapping in multiple sclerosis: normal-appearing white matter and the invisible lesion load. Magn Reson Imaging 12:34–43

    Google Scholar 

  36. Lacomis D, Osbakken M, Gross G (1988) Spin lattice relaxation (T1) times of cerebral white matter in multiple sclerosis. Magn Reson Med 7:43–55

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eufrosini Papadaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papanikolaou, N., Papadaki, E., Karampekios, S. et al. T2 relaxation time analysis in patients with multiple sclerosis: correlation with magnetization transfer ratio. Eur Radiol 14, 115–122 (2004). https://doi.org/10.1007/s00330-003-1946-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-003-1946-0

Keywords

Navigation