Skip to main content
Log in

MR elastography of liver tumours: value of viscoelastic properties for tumour characterisation

  • Hepatobiliary-Pancreas
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To assess the value of the viscoelastic parameters in the characterisation of liver tumours at MR elastography.

Patients and methods

Ninety-four patients with liver tumours >1 cm prospectively underwent MR elastography using 50-Hz mechanical waves and a full three-directional motion-sensitive sequence. The model-free viscoelastic parameters (the complex shear modulus and its real and imaginary parts, i.e. the storage and loss moduli) were calculated in 72 lesions after exclusion of cystic, treated or histopathologically undetermined tumours.

Results

We observed higher absolute shear modulus and loss modulus in malignant versus benign tumours (3.38 ± 0.26 versus 2.41 ± 0.15 kPa, P < 0.01 and 2.25 ± 0.26 versus 1.05 ± 0.13 kPa, P < 0.001, respectively). Moreover, the loss modulus of hepatocellular carcinomas was significantly higher than in benign hepatocellular tumours. The storage modulus did not differ significantly between malignant and benign tumours. The area under the receiver-operating characteristic curve of loss modulus was significantly larger than that of the absolute shear modulus and storage modulus when comparing malignant and benign lesions.

Conclusions

The increased loss modulus is a better discriminator between benign and malignant tumours than the increased storage modulus or absolute value of the shear modulus.

Key Points

Magnetic Resonance elastography is a new method of assessing the liver.

Increased loss modulus is an indicator of malignancy in hepatic tumours.

Loss modulus is a better discriminator than absolute shear modulus values.

The viscoelastic properties of lesions offer promise for characterising liver tumours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

|G*|:

Absolute value of the complex-valued shear modulus

G′:

Storage modulus

G″:

Loss modulus

HCC:

Hepatocellular carcinoma

FNH:

Focal nodular hyperplasia

ICC:

Intraclass correlation coefficient

MR:

Magnetic resonance

ROI:

Region of interest

ROC:

Receiver-operating characteristics

AUROC:

Area under the receiver-operating characteristic curve

References

  1. Taouli B, Losada M, Holland A, Krinsky G (2004) Magnetic resonance imaging of hepatocellular carcinoma. Gastroenterology 127:S144–152

    Article  PubMed  Google Scholar 

  2. Bahirwani R, Reddy KR (2008) Review article: the evaluation of solitary liver masses. Aliment Pharmacol Ther 28:953–965

    PubMed  CAS  Google Scholar 

  3. Bruegel M, Holzapfel K, Gaa J et al (2008) Characterization of focal liver lesions by ADC measurements using a respiratory triggered diffusion-weighted single-shot echo-planar MR imaging technique. Eur Radiol 18:477–485

    Article  PubMed  Google Scholar 

  4. Silva AC, Evans JM, McCullough AE, Jatoi MA, Vargas HE, Hara AK (2009) MR imaging of hypervascular liver masses: a review of current techniques. Radiographics 29:385–402

    Article  PubMed  Google Scholar 

  5. Kudo M (2010) Will Gd-EOB-MRI change the diagnostic algorithm in hepatocellular carcinoma? Oncology 78:87–93

    Article  PubMed  Google Scholar 

  6. Bruix J, Sherman M (2005) Management of hepatocellular carcinoma. Hepatology 42:1208–1236

    Article  PubMed  Google Scholar 

  7. Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL (1995) Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269:1854–1857

    Article  PubMed  CAS  Google Scholar 

  8. Sinkus R, Tanter M, Xydeas T, Catheline S, Bercoff J, Fink M (2005) Viscoelastic shear properties of in vivo breast lesions measured by MR elastography. Magn Reson Imaging 23:159–165

    Article  PubMed  Google Scholar 

  9. Asbach P, Klatt D, Schlosser B et al (2010) Viscoelasticity-based staging of hepatic fibrosis with multifrequency MR elastography. Radiology 257:80–86

    Article  PubMed  Google Scholar 

  10. Sinkus R, Lorenzen J, Schrader D, Lorenzen M, Dargatz M, Holz D (2000) High-resolution tensor MR elastography for breast tumour detection. Phys Med Biol 45:1649–1664

    Article  PubMed  CAS  Google Scholar 

  11. Huwart L, Peeters F, Sinkus R et al (2006) Liver fibrosis: non-invasive assessment with MR elastography. NMR Biomed 19:173–179

    Article  PubMed  Google Scholar 

  12. Yin M, Talwalkar JA, Glaser KJ et al (2007) Assessment of hepatic fibrosis with magnetic resonance elastography. Clin Gastroenterol Hepatol 5:e1202

    Article  Google Scholar 

  13. Huwart L, Sempoux C, Vicaut E et al (2008) Magnetic resonance elastography for the noninvasive staging of liver fibrosis. Gastroenterology 135:32–40

    Article  PubMed  Google Scholar 

  14. Venkatesh SK, Yin M, Glockner JF et al (2008) MR elastography of liver tumors: preliminary results. AJR Am J Roentgenol 190:1534–1540

    Article  PubMed  Google Scholar 

  15. Manduca A, Oliphant TE, Dresner MA et al (2001) Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Med Image Anal 5:237–254

    Article  PubMed  CAS  Google Scholar 

  16. Mariappan YK, Glaser KJ, Ehman RL (2010) Magnetic resonance elastography: a review. Clin Anat 23:497–511

    Article  PubMed  Google Scholar 

  17. Bavu E, Gennisson JL, Couade M et al (2011) Noninvasive in vivo liver fibrosis evaluation using supersonic shear imaging: a clinical study on 113 hepatitis C virus patients. Ultrasound Med Biol 37:1361–1373

    Article  PubMed  Google Scholar 

  18. Ronot M, Bahrami S, Calderaro J et al (2011) Hepatocellular adenomas: accuracy of magnetic resonance imaging and liver biopsy in subtype classification. Hepatology 53:1182–1191

    Article  PubMed  Google Scholar 

  19. Bruix J, Sherman M, Llovet JM et al (2001) Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. J Hepatol 35:421–430

    Article  PubMed  CAS  Google Scholar 

  20. Bruix J, Sherman M (2011) Management of hepatocellular carcinoma: an update. Hepatology 53:1020–1022

    Article  PubMed  Google Scholar 

  21. Sinkus R, Tanter M, Catheline S et al (2005) Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography. Magn Reson Med 53:372–387

    Article  PubMed  CAS  Google Scholar 

  22. Padhani AR, Liu G, Koh DM et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125

    PubMed  CAS  Google Scholar 

  23. Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39:561–577

    PubMed  CAS  Google Scholar 

  24. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845

    Article  PubMed  CAS  Google Scholar 

  25. International Working Party (1995) Terminology of nodular hepatocellular lesions. Hepatology 22:983–993

    Google Scholar 

  26. Fahey BJ, Nelson RC, Bradway DP, Hsu SJ, Dumont DM, Trahey GE (2008) In vivo visualization of abdominal malignancies with acoustic radiation force elastography. Phys Med Biol 53:279–293

    Article  PubMed  CAS  Google Scholar 

  27. Cho SH, Lee JY, Han JK, Choi BI (2010) Acoustic radiation force impulse elastography for the evaluation of focal solid hepatic lesions: preliminary findings. Ultrasound Med Biol 36:202–208

    Article  PubMed  Google Scholar 

  28. Tseng Y, Fedorov E, McCaffery JM, Almo SC, Wirtz D (2001) Micromechanics and ultrastructure of actin filament networks crosslinked by human fascin: a comparison with alpha-actinin. J Mol Biol 310:351–366

    Article  PubMed  CAS  Google Scholar 

  29. Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285:1028–1032

    Article  PubMed  CAS  Google Scholar 

  30. Weaver VM, Roskelley CD (1997) Extracellular matrix: the central regulator of cell and tissue homeostasis. Trends Cell Biol 7:40–42

    Article  PubMed  CAS  Google Scholar 

  31. Bilston LE (2002) The effect of perfusion on soft tissue mechanical properties: a computational model. Comput Methods Biomech Biomed Engin 5:283–290

    Article  PubMed  Google Scholar 

  32. Fukumura D, Jain RK (2007) Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res 74:72–84

    Article  PubMed  CAS  Google Scholar 

  33. Gialeli C, Theocharis AD, Karamanos NK (2011) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 278:16–27

    Article  PubMed  CAS  Google Scholar 

  34. Siegmann KC, Xydeas T, Sinkus R, Kraemer B, Vogel U, Claussen CD (2010) Diagnostic value of MR elastography in addition to contrast-enhanced MR imaging of the breast-initial clinical results. Eur Radiol 20:318–325

    Article  PubMed  Google Scholar 

  35. Garteiser P, Doblas S, Daire J-L, et al (2011) Combining biomechanical and diffusion data into a composite biomarker for the determination of hepatic tumor malignancy. Proceedings of the 2011 conference of the European Society of Magnetic Resonance in Medicine and Biology 28

  36. Mariappan YK, Rossman PJ, Glaser KJ, Manduca A, Ehman RL (2009) Magnetic resonance elastography with a phased-array acoustic driver system. Magn Reson Med 61:678–685

    Article  PubMed  Google Scholar 

  37. Asbach P, Klatt D, Hamhaber U et al (2008) Assessment of liver viscoelasticity using multifrequency MR elastography. Magn Reson Med 60:373–379

    Article  PubMed  Google Scholar 

  38. Berry GP, Bamber JC, Armstrong CG, Miller NR, Barbone PE (2006) Towards an acoustic model-based poroelastic imaging method: I. Theoretical foundation. Ultrasound Med Biol 32:547–567

    Article  PubMed  Google Scholar 

  39. Berry GP, Bamber JC, Miller NR, Barbone PE, Bush NL, Armstrong CG (2006) Towards an acoustic model-based poroelastic imaging method: II. experimental investigation. Ultrasound Med Biol 32:1869–1885

    Article  PubMed  Google Scholar 

  40. Klatt D, Hamhaber U, Asbach P, Braun J, Sack I (2007) Noninvasive assessment of the rheological behavior of human organs using multifrequency MR elastography: a study of brain and liver viscoelasticity. Phys Med Biol 52:7281–7294

    Article  PubMed  Google Scholar 

  41. Konofagou EE, Harrigan TP, Ophir J, Krouskop TA (2001) Poroelastography: imaging the poroelastic properties of tissues. Ultrasound Med Biol 27:1387–1397

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Garteiser.

Electronic supplementary material

ESM Fig. 5

T2-weighted images, loss modulus (G″) maps and time-resolved maps of displacement in the horizontal direction of metastasis (A, D and G), HCC (B, E and H) and FNH (C, F and I). The loss modulus of HCC (2.89 kPa) is higher than that of the FNH (0.49 kPa) (PPTX 1081 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garteiser, P., Doblas, S., Daire, JL. et al. MR elastography of liver tumours: value of viscoelastic properties for tumour characterisation. Eur Radiol 22, 2169–2177 (2012). https://doi.org/10.1007/s00330-012-2474-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-012-2474-6

Keywords

Navigation