Skip to main content
Log in

Advances in imaging and in non-surgical salvage treatments after radiorecurrence in prostate cancer: what does the oncologist, radiotherapist and radiologist need to know?

  • Oncology
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

In this article the state of art the of prostate cancer (Pca) imaging and non-surgical salvage treatments (STs) is surveyed in order to explore the impact of imaging findings on the identification of radiorecurrent Pca after external beam radiotherapy (EBRT).

Methods

A computerised search was performed to identify all relevant studies in Medline up to 2012. Additional articles were extracted based on recommendations from an expert panel of authors.

Results

Definitive EBRT for Pca is increasingly used as treatment. After radiorecurrent Pca, non-surgical STs are emerging and shifting from investigational status to more established therapeutic options. Therefore, several scientific societies have published guidelines including clinical and imaging recommendations, even if the timing, efficacy and long-term toxicity of these STs have to be established. In some measure, accurately delineating the location and the extent of cancer is critical in selecting target lesions and in identifying patients who are candidates for STs. However, there is increasing awareness that anatomical approaches based on measurements of tumour size have substantial limitations, especially for tumours of unknown activity that persist or recur following irradiation

Conclusions

To date, the main focus for innovations in imaging is the combination of excellence in anatomical resolution with specific biological correlates that depict metabolic processes and hallmarks at the tumour level. The emergence of new molecular markers could favour the development of methods that directly determine their presence, thereby improving tumour detection.

Key Points

• Imaging may influence therapeutic decisions during non-surgical STs.

• MRI findings correlate with parametric maps derived from multiple functional techniques.

• Non-surgical salvage treatments allow local tumour control in patients with radiorecurrent PCa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Potosky AL, Davis WW, Hoffman RM (2004) Five-year outcomes after prostatectomy or radiotherapy for prostate cancer: the prostate cancer outcomes study. J Natl Cancer Inst 96:1358–1367

    Article  PubMed  Google Scholar 

  2. D’Amico AV, Cote K, Loffredo M (2003) Pre-treatment predictors of time to cancer specific death after prostate specific antigen failure. J Urol 169:1320–1324

    Article  PubMed  Google Scholar 

  3. Hanlom AL, Moore DF, Hanks GE (1998) Modelling post-radiation PSA levels kinetics: predictors of rising postnadir slope suggest cure in men who remain biochemically free of prostate carcinoma. Cancer 83:130–134

    Article  Google Scholar 

  4. Zietman AL, Christodouleas JP, Shipley WU (2005) PSA bounces after neoadjuvant androgen deprivation and external beam radiation: impact on definitions of failure. Int J Radiat Oncol Biol Phys 62:714–718

    Article  PubMed  Google Scholar 

  5. Horwitz EM, Thames HD, Kuban DA (2005) Definitions of biochemical failure that best predict clinical failure in patients with prostate cancer treated by external beam radiation alone: a multi-institutional pooled analysis. J Urol 173:797–802

    Article  PubMed  Google Scholar 

  6. Abramowitz MC, Li T, Buyyounouski MK (2008) The Phoenix definition of biochemical failure predicts for overall survival in patients with prostate cancer. Cancer 112:55–60

    Article  PubMed  Google Scholar 

  7. D’Amico AV, Chen MH, de Castro M et al (2012) Surrogate endpoints for prostate cancer-specific mortality after radiotherapy and androgen suppression therapy in men with localised or locally advanced prostate cancer: an analysis of two randomised trials. Lancet Oncol 13:189–195

    Article  PubMed  Google Scholar 

  8. Hancock SL, Cox RS, Bagshaw MA (1995) Prostate specific antigen after radiotherapy for prostate cancer: a reevaluation of long-term biochemical control and the kinetics of recurrence in patients treated at Stanford University. J Urol 154:1412–1417

    Article  PubMed  CAS  Google Scholar 

  9. Kimura M, Mouraviev V, Tsivian M, Mayes JM, Satoh T, Polascik TJ (2010) Current salvage methods for recurrent prostate cancer after failure of primary radiotherapy. BJU Int 105:191–201

    Article  PubMed  CAS  Google Scholar 

  10. Mouraviev V, Villers A, Bostwick DG, Wheeler TM, Montironi R, Polascik TJ (2011) Understanding the pathological features of focality, grade and tumour volume of early-stage prostate cancer as a foundation for parenchyma-sparing prostate cancer therapies: active surveillance and focal targeted therapy. BJU Int 108:1074–1085

    Article  PubMed  Google Scholar 

  11. Porten SP, Cooperberg MR, Carroll PR (2010) The independent value of tumour volume in a contemporary cohort of men treated with radical prostatectomy for clinically localized disease. BJU Int 105:472–475

    Article  PubMed  Google Scholar 

  12. Lindner U, Lawrentschuk N, Trachtenberg J (2010) Image guidance for focal therapy of prostate cancer. World J Urol 28:727–734

    Article  PubMed  CAS  Google Scholar 

  13. Tan CH, Wang J, Kundra V (2011) Diffusion weighted imaging in prostate cancer. Eur Radiol 21:593–603

    Article  PubMed  Google Scholar 

  14. Thoeny HC, Triantafyllou M, Birkhaeuser FD, Froehlich JM, Tshering DW, Binser T, Fleischmann A, Vermathen P, Studer UE (2009) Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging reliably detect pelvic lymph node metastases in normal-sized nodes of bladder and prostate cancer patients. Eur Urol 55:761–769

    Article  PubMed  Google Scholar 

  15. Rouvière O, Papillard M, Girouin N, Boutier R, Rabilloud M, Riche B, Mège-Lechevallier F, Colombel M, Gelet A (2012) Is it possible to model the risk of malignancy of focal abnormalities found at prostate multiparametric MRI? Eur Radiol 22:1149-1157

    Google Scholar 

  16. Rouvière O, Vitry T, Lyonnet D (2010) Imaging of prostate cancer local recurrences: why and how? Eur Radiol 20:1254–1266

    Article  PubMed  Google Scholar 

  17. Akin O, Gultekin DH, Vargas HA, Zheng J, Moskowitz C, Pei X, Sperling D, Schwartz LH, Hricak H, Zelefsky MJ (2011) Incremental value of diffusion weighted and dynamic contrast enhanced MRI in the detection of locally recurrent prostate cancer after radiation treatment: preliminary results. Eur Radiol 9:1970–1978

    Article  Google Scholar 

  18. Westphalen AC, Koff WJ, Coakley FV, Muglia VF, Neuhaus JM, Marcus RT, Kurhanewicz J, Smith-Bindman R (2011) Prostate cancer: prediction of biochemical failure after external-beam radiation therapy—Kattan nomogram and endorectal MR imaging estimation of tumor volume. Radiology 1:477–486

    Article  Google Scholar 

  19. Pucar D, Shukla-Dave A, Hricak H (2005) Prostate cancer: correlation of MR imaging and MR spectroscopy with pathologic findings after radiation therapy ñ initial experience. Radiology 236:545–553

    Article  PubMed  Google Scholar 

  20. Coakley FV, The HS, Qayyum A (2004) Endorectal MR imaging and MR spectroscopic imaging for locally recurrent prostate cancer after external beam radiation therapy: preliminary experience. Radiology 233:441–448

    Article  PubMed  Google Scholar 

  21. Westphalen AC, Coakley FV, Roach M 3rd, McCulloch CE, Kurhanewicz J (2010) Locally recurrent prostate cancer after external beam radiation therapy: diagnostic performance of 1.5-T endorectal MR imaging and MR spectroscopic imaging for detection. Radiology 6:485–492

    Article  Google Scholar 

  22. Arumainayagam N, Kumaar S, Ahmed HU, Moore CM, Payne H (2010) Accuracy of multiparametric magnetic resonance imaging in detecting recurrent prostate cancer after radiotherapy. BJU Int 106:991–997

    Article  PubMed  Google Scholar 

  23. Franiel T, Hamm B, Hricak H (2011) Dynamic contrast-enhanced magnetic resonance imaging and pharmacokinetic models in prostate cancer. Eur Radiol 21:616–626

    Article  PubMed  Google Scholar 

  24. Haider MA, Chung P, Sweet J (2008) Dynamic contrast enhanced magnetic resonance imaging for localisation of recurrent prostate cancer after external beam radiotherapy. Int J Radiat Oncol Biol Phys 70:425–430

    Article  PubMed  Google Scholar 

  25. Kim CK, Park BK, Park W, Kim SS (2010) Prostate MR imaging at 3T using a phased-arrayed coil in predicting locally recurrent prostate cancer after radiation therapy: preliminary experience. Abdom Imaging 35:246–252

    Article  PubMed  Google Scholar 

  26. Martino P, Scattoni V, Galosi AB, Consonni P, Trombetta C, Palazzo S, Maccagnano C, Liguori G, Valentino M, Battaglia M, Barozzi L (2011) Role of imaging and biopsy to assess local recurrence after definitive treatment for prostate carcinoma (surgery, radiotherapy, cryotherapy, HIFU. World J Urol 29:595–605

    Article  PubMed  Google Scholar 

  27. Roethke M, Anastasiadis AG, Lichy M, Werner M, Wagner P, Kruck S, Claussen CD, Stenzl A, Schlemmer HP, Schilling D (2012) MRI-guided prostate biopsy detects clinically significant cancer: analysis of a cohort of 100 patients after previous negative TRUS biopsy. World J Urol 30:213-218

    Google Scholar 

  28. Turkbey B, Xu S, Kruecker J, Locklin J, Pang Y, Bernardo M, Merino MJ, Wood BJ, Choyke PL, Pinto PA (2011) Documenting the location of prostate biopsies with image fusion. BJU Int 107:53–57

    Article  PubMed  Google Scholar 

  29. Hadaschik BA, Kuru TH, Tulea C, Rieker P, Popeneciu IV, Simpfendörfer T, Huber J, Zogal P, Teber D, Pahernik S, Roethke M, Zamecnik P, Roth W, Sakas G, Schlemmer HP, Hohenfellner M (2011) A novel stereotactic prostate biopsy system integrating pre-interventional magnetic resonance imaging and live ultrasound fusion. J Urol 186:2214–2220

    Article  PubMed  Google Scholar 

  30. Schouten MG, Bomers JG, Yakar D, Huisman H, Rothgang E, Bosboom D, Scheenen TW, Misra S, Fütterer JJ (2012) Evaluation of a robotic technique for transrectal MRI-guided prostate biopsies. Eur Radiol 22:476–483

    Article  PubMed  Google Scholar 

  31. Liu IJ, Zafar MB, Lai YH, Segall GM, Terris MK (2001) Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology 57:108–111

    Article  PubMed  CAS  Google Scholar 

  32. Giovacchini G, Picchio M, Coradeschi E, Scattoni V, Bettinardi V, Cozzarini C, Freschi M, Fazio F, Messa C (2008) [(11)C]choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy. Eur J Nucl Med Mol Imaging 35:1065–1073

    Article  PubMed  CAS  Google Scholar 

  33. Picchio M, Briganti A, Fanti S, Heidenreich A, Krause BJ, Messa C, Montorsi F, Reske SN, Thalmann GN (2011) The role of choline positron tomography/computed tomography in the management of patients with prostate-specific antigen progression after radical treatment of prostate cancer. Eur Urol 59:51–60

    Article  PubMed  Google Scholar 

  34. Pucar D, Sella T, Schöder H (2008) The role of imaging in the detection of prostate cancer local recurrence after radiation therapy and surgery. Curr Opin Urol 18:87–97

    Article  PubMed  Google Scholar 

  35. Krause BJ, Souvatzoglou M, Tuncel M, Herrmann K, Buck AK, Praus C, Schuster T, Geinitz H, Treiber U, Schwaiger M (2008) The detection rate of [11C]choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 35:18–23

    Article  PubMed  CAS  Google Scholar 

  36. Núñez R, Erwin WD, Wendt RE 3rd, Stachowiak A, Mar M, Stevens D, Madewell JE, Yeung HW, Macapinlac HA (2010) Acquisition parameters for oncologic imaging with a new SPECT/multislice CT scanner. Mol Imaging Biol 12:110–138

    Article  PubMed  Google Scholar 

  37. Brawer MK (2002) Radiation therapy failure in prostate cancer patients: risk factors and methods of detection. Rev Urol 4(Suppl 2):S2–S11

    PubMed  Google Scholar 

  38. Grossfeld GD, Li YP, Lubeck DP, Broering JM, Mehta SS, Carroll PR (2002) Predictors of secondary cancer treatment in patients receiving local therapy for prostate cancer: data from cancer of the prostate strategic urologic research endeavor. J Urol 168:530–535

    Article  PubMed  Google Scholar 

  39. Moman MR, van den Berg CA, Boeken Kruger AE, Battermann JJ, Moerland MA, van der Heide UA, van Vulpen M (2010) Focal salvage guided by T2-weighted and dynamic contrast-enhanced magnetic resonance imaging for prostate cancer recurrences. Int J Radiat Oncol Biol Phys 76:741–746

    Article  PubMed  Google Scholar 

  40. Wang H, Vees H, Miralbell R, Wissmeyer M, Steiner C, Ratib O, Senthamizhchelvan S, Zaidi H (2009) 18F-fluorocholine PET-guided target volume delineation techniques for partial prostate re-irradiation in local recurrent prostate cancer. Radiother Oncol 93:220–225

    Article  PubMed  CAS  Google Scholar 

  41. Weber DC, Wang H, Cozzi L, Dipasquale G, Khan HG, Ratib O, Rouzaud M, Vees H, Zaidi H, Miralbell R (2009) RapidArc, intensity modulated photon and proton techniques for recurrent prostate cancer in previously irradiated patients: a treatment planning comparison study. Radiat Oncol 4:34–39

    Article  PubMed  Google Scholar 

  42. Vavassori A, Jereczek-Fossa BA, Beltramo G (2010) Image-guided robotic radiosurgery as salvage therapy for locally recurrent prostate cancer after external beam irradiation: retrospective feasibility study on six cases. Tumori 96:71–75

    PubMed  Google Scholar 

  43. Jereczek-Fossa BA, Beltramo G, Fariselli L, Fodor C, Santoro L, Vavassori A, Zerini D, Gherardi F, Ascione C, Bossi-Zanetti I, Mauro R, Bregantin A, Bianchi LC, De Cobelli O, Orecchia R (2012) Robotic image-guided stereotactic radiotherapy, for isolated recurrent primary, lymph node or metastatic prostate cancer. Int J Radiat Oncol Biol Phys 82:889–897

    Article  PubMed  Google Scholar 

  44. Finley DS, Belldegrun AS (2011) Salvage cryotherapy for radiation-recurrent prostate cancer: outcomes and complications. Curr Urol Rep 12:209–215

    Article  PubMed  Google Scholar 

  45. Mouraviev V, Spiess PE, Jones JS (2012) Salvage cryoablation for locally recurrent prostate cancer following primary radiotherapy. Eur Urol 61:1204-1211

    Google Scholar 

  46. Lukka H, Waldron T, Chin J, Mayhew L, Warde P, Winquist E, Rodrigues G, Shayegan B (2011) Genitourinary Cancer Disease Site Group of Cancer Care Ontario’s Program in evidence-based care. High-intensity focused ultrasound for prostate cancer: a systematic review. Clin Oncol (R Coll Radiol) 23:117–127

    Article  CAS  Google Scholar 

  47. Zacharakis E, Ahmed HU, Ishaq A, Scott R, Illing R, Freeman A, Allen C, Emberton M (2008) The feasibility and safety of high-intensity focused ultrasound as salvage therapy for recurrent prostate cancer following external beam radiotherapy. BJU Int 102:786–792

    Article  PubMed  Google Scholar 

  48. Gelet A, Chapelon JY, Poissonnier L, Bouvier R, Rouvière O, Curiel L, Janier M, Vallancien G (2004) Local recurrence of prostate cancer after external beam radiotherapy: early experience of salvage therapy using high-intensity focused ultrasonography. Urology 63:625–629

    Article  PubMed  Google Scholar 

  49. Murat FJ, Poissonnier L, Rabilloud M, Belot A, Bouvier R, Rouviere O, Chapelon JY, Gelet A (2009) Mid-term results demonstrate salvage high-intensity focused ultrasound (HIFU) as an effective and acceptably morbid salvage treatment option for locally radiorecurrent prostate cancer. Eur Urol 55:640–647

    Article  PubMed  Google Scholar 

  50. Berge V, Baco E, Karlsen SJ (2010) A prospective study of salvage high-intensity focused ultrasound for locally radiorecurrent prostate cancer: early results. Scand J Urol Nephrol 44:223–227

    Article  PubMed  Google Scholar 

  51. Berge V, Baco E, Dahl AA, Karlsen SJ (2011) Health-related quality of life after salvage high-intensity focused ultrasound (HIFU) treatment for locally radiorecurrent prostate cancer. Int J Urol 18:646–651

    Article  PubMed  Google Scholar 

  52. Nathan TR, Whitelaw DE, Chang SC, Lees WR, Ripley PM, Payne H, Jones L, Parkinson MC, Emberton M, Gillams AR, Mundy AR, Bown SG (2002) Photodynamic therapy for prostate cancer recurrence after radiotherapy: a phase I study. J Urol 168:1427–1432

    Article  PubMed  CAS  Google Scholar 

  53. Weersink RA, Bogaards A, Gertner M (2005) Techniques for delivery and monitoring of TOOKAD (WST09)-mediated photodynamic therapy of the prostate: clinical experience and practicalities. J Photochem Photobiol B 79:211–222

    Article  PubMed  CAS  Google Scholar 

  54. Trachtenberg J, Weersink RA, Davidson SR, Haider MA, Bogaards A, Gertner MR, Evans A, Scherz A, Savard J, Chin JL, Wilson BC, Elhilali M (2008) Vascular-targeted photodynamic therapy (padoporfin, WST09) for recurrent prostate cancer after failure of external beam radiotherapy: a study of escalating light doses. BJU Int 02:556–562

    Article  Google Scholar 

  55. Trachtenberg J, Bogaards A, Weersink RA, Haider MA, Evans A, McCluskey SA, Scherz A, Gertner MR, Yue C, Appu S, Aprikian A, Savard J, Wilson BC, Elhilali M (2007) Vascular targeted photodynamic therapy with palladium-bacteriopheophorbide photosensitizer for recurrent prostate cancer following definitive radiation therapy: assessment of safety and treatment response. J Urol 178:1974–1979

    Article  PubMed  CAS  Google Scholar 

  56. Ahmed HU, Moore C, Lecornet E, Emberton M (2010) Focal therapy in prostate cancer: determinants of success and failure. J Endourol 24:819–825

    Article  PubMed  Google Scholar 

  57. Chen JC, Moriarty JA, Derbyshire JA, Peters RD, Trachtenberg J, Bell SD, Doyle J, Arrelano R, Wright GA, Henkelman RM, Hinks RS, Lok SY, Toi A, Kucharczyk W (2000) Prostate cancer: MR imaging and thermometry during microwave thermal ablation-initial experience. Radiology 214:290–297

    PubMed  CAS  Google Scholar 

  58. Lancaster C, Toi A, Trachtenberg J (1999) Interstitial microwave thermoablation for localized prostate cancer. Urology 53:828–831

    Article  PubMed  CAS  Google Scholar 

  59. Trachtenberg J, Chen J, Kucharczyk W, Toi A, Lancaster C (1999) Microwave thermoablation for localized prostate cancer after failed radiation therapy: role of neoadjuvant hormonal therapy. Mol Urol 3:247–250

    PubMed  Google Scholar 

  60. McCann C, Kumaradas JC, Gertner MR, Davidson SR, Dolan AM, Sherar MD (2003) Feasibility of salvage interstitial microwave thermal therapy for prostate carcinoma following failed brachytherapy: studies in a tissue equivalent phantom. Phys Med Biol 48:1041–1052

    Article  PubMed  Google Scholar 

  61. Shariat SF, Raptidis G, Masatoschi M, Bergamaschi F, Slawin KM (2005) Pilot study of radiofrequency interstitial tumor ablation (RITA) for the treatment of radio-recurrent prostate cancer. Prostate 65:260–267

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Luca Gravina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gravina, G.L., Tombolini, V., Di Staso, M. et al. Advances in imaging and in non-surgical salvage treatments after radiorecurrence in prostate cancer: what does the oncologist, radiotherapist and radiologist need to know?. Eur Radiol 22, 2848–2858 (2012). https://doi.org/10.1007/s00330-012-2546-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-012-2546-7

Keywords

Navigation