Skip to main content
Log in

Turing Instabilities at Hopf Bifurcation

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

Turing–Hopf instabilities for reaction-diffusion systems provide spatially inhomogeneous time-periodic patterns of chemical concentrations. In this paper we suggest a way for deriving asymptotic expansions to the limit cycle solutions due to a Hopf bifurcation in two-dimensional reaction systems and we use them to build convenient normal modes for the analysis of Turing instabilities of the limit cycle. They extend the Fourier modes for the steady state in the classical Turing approach, as they include time-periodic fluctuations induced by the limit cycle. Diffusive instabilities can be properly considered because of the non-catastrophic loss of stability that the steady state shows while the limit cycle appears. Moreover, we shall see that instabilities may appear even though the diffusion coefficients are equal. The obtained normal modes suggest that there are two possible ways, one weak and the other strong, in which the limit cycle generates oscillatory Turing instabilities near a Turing–Hopf bifurcation point. In the first case slight oscillations superpose over a dominant steady inhomogeneous pattern. In the second, the unstable modes show an intermittent switching between complementary spatial patterns, producing the effect known as twinkling patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baurmann, M., Gross, T., Feudel, U.: Instabilities in spatially extended predator–prey systems: Spatiotemporal patterns in the neighborhood of Turing–Hopf bifurcations. J. Theor. Biol. 245(2), 220–229 (2007)

    Article  MathSciNet  Google Scholar 

  • Bogoliubov, N.N., Mitropolski, Y.A.: Asymptotic Methods in the Theory of Nonlinear Oscillations. Gordon and Breach, New York (1961)

    Google Scholar 

  • Edelstein-Keshet, L.: Mathematical Models in Biology. Birkhauser, New York (1988)

    MATH  Google Scholar 

  • Golubitsky, M., Knobloch, E., Stewart, I.: Target patterns and spirals in planar reaction-diffusion systems. J. Nonlinear Sci. 10, 333–354 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer, New York (1981)

    MATH  Google Scholar 

  • Hofbauer, J., So, J.W.-H.: Multiple limit cycles for three dimensional Lotka–Volterra equations. Appl. Math. Lett. 7(6), 65–70 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Just, W., Bose, M., Bose, S., Engel, H., Schöll, E.: Spatiotemporal dynamics near a supercritical Turing–Hopf bifurcation in a two-dimensional reaction-diffusion system. Phys. Rev. E 64(026219), 1–12 (2001)

    Google Scholar 

  • Kuznetsov, Yu.A.: Elements of Applied Bifurcation Theory, 2nd edn. Applied Mathematical Sciences, vol. 112. Springer, New York (1998)

    MATH  Google Scholar 

  • Leiva, H.: Stability of a periodic solution for a system of parabolic equations. Appl. Anal. 60, 277–300 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Maini, P.K., Painter, K.J., Chau, H.N.P.: Spatial pattern formation in chemical and biological systems. J. Chem. Soc. Faraday Trans. 93(20), 3601–3610 (1997)

    Article  Google Scholar 

  • Marques, F., Gelfgat, A.Yu., Lopez, J.M.: Tangent double Hopf bifurcation in a differentially rotating cylinder FBW. Phys. Rev. Lett. E 68(016310), 1–13 (2003)

    MathSciNet  Google Scholar 

  • Marsden, J.E., McCracken, M.: The Hopf Bifurcation and Its Applications. Springer, New York (1976)

    MATH  Google Scholar 

  • Meixner, M., De Wit, A., Bose, S., Schöll, E.: Generic spatiotemporal dynamics near codimension-two Turing–Hopf bifurcations. Phys. Rev. E 55(6), 6690–6697 (1997)

    Article  MathSciNet  Google Scholar 

  • Murray, J.D.: Mathematical Biology, 3rd edn. Interdisciplinary Applied Mathematics, vol. 17. Springer, New York (2001)

    Google Scholar 

  • Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical applications, 3rd edn. Interdisciplinary Applied Mathematics, vol. 18. Springer, New York (2003)

    MATH  Google Scholar 

  • Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, New York (1976)

    MATH  Google Scholar 

  • Sanders, J.A., Verhulst, F.: Averaging Methods in Nonlinear Dynamical Systems. Applied Mathematical Sciences, vol. 59. Springer, New York (1985)

    MATH  Google Scholar 

  • Sandstede, B., Scheel, A.: Essential instabilities of fronts: bifurcation and bifurcation failure. Dyn. Syst. 16(1), 1–28 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Schnakenberg, J.: Simple chemical reactions with limit cycle behaviour. J. Theor. Biol. 81, 389–400 (1979)

    Article  MathSciNet  Google Scholar 

  • Schuman, B., Tóth, J.: No limit cycle in two species second order kinetics. Bull. Sci. Math. 127(3), 222–230 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Turing, A.M.: The chemical basis for morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72 (1952)

    Article  Google Scholar 

  • van der Ploeg, H., Doelman, A.: Stability of spatially periodic pulse patterns in a class of singularly perturbed reaction-diffusion equations. Indiana Univ. Math. J. 54(5), 1219–1301 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Vastano, J.A., Pearson, J.E., Horsthemke, W., Swinney, H.L.: Chemical pattern formation with equal diffusion coefficients. Phys. Lett. A 124(6–7), 320–324 (1987)

    Article  Google Scholar 

  • Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems. Springer, Berlin (1990)

    MATH  Google Scholar 

  • Ward, M.J.: Asymptotic methods for reaction-diffusion systems: past and present. Bull. Math. Biol. 68(5), 1151–1167 (2006)

    Article  Google Scholar 

  • Ward, M.J., Wei, J.: Hopf bifurcations and oscillatory instabilities of spike solutions for the one-dimensional Gierer–Meinhardt model. J. Nonlinear Sci. 13(2), 209–264 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Wei, J., Winter, M.: Asymmetric spotty patterns for the Gray–Scott model in ℝ2. Stud. Appl. Math. 110(1), 63–102 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Wilhelm, T., Heinrich, R.: Mathematical analysis of the smallest chemical reaction system with Hopf bifurcation. J. Math. Chem. 19(2), 1–14 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, L., Epstein, I.R.: Oscillatory Turing patterns in reaction-diffusion systems with two coupled layers. Phys. Rev. Lett. 90(17), 1–4 (2003) (178303)

    Article  Google Scholar 

  • Yang, L., Berenstein, I., Epstein, I.R.: Segmented waves from a spatiotemporal transverse wave instability. Phys. Rev. Lett. 95(3), 1–4 (2005) (038303)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Ricard.

Additional information

Communicated by P.K. Maini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ricard, M.R., Mischler, S. Turing Instabilities at Hopf Bifurcation. J Nonlinear Sci 19, 467–496 (2009). https://doi.org/10.1007/s00332-009-9041-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-009-9041-6

Keywords

Mathematics Subject Classification (2000)

Navigation