Skip to main content
Log in

Hamel’s Formalism for Infinite-Dimensional Mechanical Systems

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, we introduce Hamel’s formalism for infinite-dimensional mechanical systems and in particular consider its applications to the dynamics of nonholonomically constrained systems. This development is a nontrivial extension of its finite-dimensional counterpart. The analysis is applied to several continuum mechanical systems of interest, including coupled systems and systems with infinitely many constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Constraints are nonholonomic if and only if they cannot be rewritten as position constraints.

  2. The map i satisfies the following property: A map \(f:N\rightarrow Q\) is smooth if and only if \(i\circ f:N\rightarrow M\) is smooth. Note that Q is usually not a submanifold of M. See Kriegl and Michor (1997) for details.

  3. Here, U can be thought of as an open subset of a convenient space.

  4. Each vector from \(T_q M\) can be represented this way.

  5. If \(\frac{\delta L}{\delta q}-\frac{d}{\mathrm{d}t}\frac{\delta L}{\delta \dot{q}}\ne 0\) at some \(t_0\), and \(i_{*}T_{q(t_0)} Q\) is dense in \(T_{q(t_0)} M\), there exists \(X\in T_{q(t_0)} Q\) such that \(\big \langle \frac{\delta L}{\delta q}-\frac{d}{\mathrm{d}t}\frac{\delta L}{\delta \dot{q}},X\big \rangle >0\). Using continuity, it is straightforward to construct a variation of the curve q(t) for which \(\int _a^b \big \langle \frac{\delta L}{\delta q}-\frac{d}{\mathrm{d}t}\frac{\delta L}{\delta \dot{q}},\delta q(t)\big \rangle \,\mathrm{d}t>0\), which is a contradiction.

  6. Nonsplitting closed subspaces already exist in Banach spaces; for more information on splitting subspaces, see Domański and Mastyło (2007) and references therein. The continuity of \(\pi ^{{\mathcal {D}}}\) in a Banach space is a consequence of the closed graph theorem. For more spaces with this property see Jarchow (1981).

  7. This holds if \(T_q M\) is a Fréchet space and A(q) has closed range, see Jarchow (1981) for details.

  8. Unlike the regular sleigh, for which \(\dot{\theta }= \mathrm {const}\).

  9. According to Kriegl and Michor (1997), all finite-dimensional Lie groups and all known infinite-dimensional Lie groups are regular.

  10. Here and below, the subscripts ‘c’ and ‘s’ stand for ‘convective’ and ‘spatial’, respectively.

  11. Often, \({\partial l}/{\partial \Omega }\) is viewed as an independent variable in these equations. See Cendra et al. (2001a; b), and Bloch et al. (2009) for the history, motivation, and finite-dimensional version of these equations.

  12. The orthogonal complement may not exist in nonHilbert spaces.

  13. This is called the dimension assumption in the finite-dimensional setting, see Bloch et al. (1996a) for details.

  14. If \(\mathcal S_q = \{0\}\), a set of nonholonomic constraints is said to be purely kinematic.

  15. Note that the intersection of two splitting subspaces may fail to be splitting already in a Banach space. For the intersection of two subspaces to be splitting, additional assumptions are necessary. According to Bill Johnson, asking that two subspaces are norm one complemented and the space itself is uniformly convex is sufficient. See http://mathoverflow.net/questions/85492/intersection-of-complemented-subspaces-of-a-banach-space for details.

References

  • Arnold, V.I.: Sur la géometrie differentialle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluids parfaits. Ann. Inst. Fourier 16, 319–361 (1966)

    Article  Google Scholar 

  • Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics, 3rd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  • Ball, K., Zenkov, D.V., Bloch, A.M.: Variational structures for Hamel’s equations and stabilization. IFAC Proc. 45, 178–183 (2012)

    Article  Google Scholar 

  • Ball, K.R., Zenkov, D.V.: Hamel’s formalism and variational integrators. In: Chang, D.E., Holm, D.D., Patrick, G., Ratiu, T. (eds.) Geometry, Mechanics, and Dynamics: the Legacy of Jerry Marsden, Fields Institute Communications, vol. 73, pp. 477–506. Springer, Berlin (2015)

    Google Scholar 

  • Binz, E., de León, M., Martín de Diego, D., Socolescu, D.: Nonholonomic constraints in classical field theories. Rep. Math. Phys. 49, 151–166 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Bloch, A.M.: Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics, vol. 24, 2nd edn. Springer, New York (2015)

    Book  Google Scholar 

  • Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Murray, R.: Nonholonomic mechanical systems with symmetry. Arch. Ration. Mech. Anal. 136, 21–99 (1996a)

    Article  MathSciNet  MATH  Google Scholar 

  • Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Ratiu, T.S.: The Euler–Poincaré equations and double bracket dissipation. Commun. Math. Phys. 175, 1–42 (1996b)

    Article  MATH  Google Scholar 

  • Bloch, A.M., Marsden, J.E., Zenkov, D.V.: Quasivelocities and symmetries in nonholonomic systems. Dyn. Syst. Int. J. 24, 187–222 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Cendra, H., Holm, D.D., Marsden, J.E., Ratiu, T.S.: Lagrangian reduction, the Euler–Poincare equations, and semidirect products. Am. Math. Soc. Transl. 186, 1–25 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Cendra, H., Marsden, J.E., Ratiu, T.S.: Geometric mechanics, lagrangian reduction, and nonholonomic systems. In: Enguist, B., Schmid, W. (eds.) Mathematics Unlimited-2001 and Beyond, pp. 221–273. Springer, New York (2001)

    Google Scholar 

  • Cendra, H., Marsden, J.E., Ratiu, T.S.: Lagrangian Reduction by Stages, Memoirs of the American Mathematical Socity, vol. 152. AMS, Providence (2001b)

    Google Scholar 

  • Chetaev, N.G.: Theoretical Mechanics. Springer, New York (1989)

    MATH  Google Scholar 

  • Domański, P., Mastyło, M.: Characterization of splitting for Fréchet–Hilbert spaces via interpolation. Mathematische Annalen 338, 317–340 (2007)

    Article  MATH  Google Scholar 

  • Ebin, D.G.: Groups of diffeomorphisms and fluid motion: reprise. In: Chang, D.E., Holm, D.D., Patrick, G., Ratiu, T. (eds.) Geometry, Mechanics, and Dynamics: the Legacy of Jerry Marsden, Fields Institute Communications, vol. 73, pp. 477–506. Springer, Berlin (2015)

    Google Scholar 

  • Ebin, D.G., Marsden, J.E.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92, 102–163 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  • Ellis, D.C.P., Gay-Balmaz, F., Holm, D.D., Putkaradze, V., Ratiu, T.S.: Symmetry reduced dynamics of charged molecular strands. Arch Ration Mech Anal 197, 811–902 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Euler, L.: Decouverte d’un nouveau principe de mecanique. Mémoires de l’académie des sciences de Berlin 6, 185–217 (1752)

    Google Scholar 

  • Euler, L.: Principes généraux de l’état d’équilibre des fluides. Mémoires de l’académie des sciences de Berlin 11, 217–273 (1757a)

  • Euler, L.: Principes généraux du mouvement des fluides. Mémoires de l’académie des sciences de Berlin 11, 274–315 (1757b)

  • Euler, L.: Principia motus fluidorum. Novi Commentarii Acad. Sci. Petropolitanae 6, 271–311 (1761)

    Google Scholar 

  • Filipović, D., Teichmann, J.: Existence of invariant manifolds for stochastic equations in infinite dimension. J. Funct. Anal. 197, 398–432 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Gay-Balmaz, F., Marsden, J.E., Ratiu, T.S.: Reduced variational formulations in free boundary continuum mechanics. J. Nonlinear Sci. 22, 463–497 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Gay-Balmaz, F., Putkaradze, V.: Dynamics of elastic rods in perfect friction contact. Phys. Rev. Lett. 109, 244303 (2012)

    Article  Google Scholar 

  • Gay-Balmaz, F., Putkaradze, V.: Dynamics of elastic strands with rolling contact. Phys. D 294, 6–23 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Gay-Balmaz, F., Yoshimura, H.: Dirac reduction for nonholonomic mechanical systems and semidirect products. Adv. Appl. Mech. 63, 131–213 (2015)

    MathSciNet  MATH  Google Scholar 

  • Hamel, G.: Die Lagrange–Eulersche gleichungen der mechanik. Z. Math. Phys. 50, 1–57 (1904)

    MATH  Google Scholar 

  • Hamilton, W.R.: On a general method in dynamics, part I. Philos. Trans. R. Soc. Lond. 124, 247–308 (1834)

    Article  Google Scholar 

  • Hamilton, W.R.: On a general method in dynamics, part II. Philos. Trans. R. Soc. Lond. 125, 95–144 (1835)

    Article  Google Scholar 

  • Hiltunen, S.: A Frobenius theorem for locally convex global analysis. Monatshefte für Mathematik 129, 109–117 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Holm, D.D., Marsden, J.E., Ratiu, T.S.: The Euler–Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137, 1–81 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Jarchow, H.: Locally Convex Spaces. Teubner, Stuttgart (1981)

    Book  MATH  Google Scholar 

  • Khesin, B., Lee, P.: A nonholonomic Moser theorem and optimal transport. J. Symplectic Geom. 7, 381–414 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis, Mathematical Surveys and Monographs, vol. 53. AMS, Providence (1997)

    Book  MATH  Google Scholar 

  • Krishnaprasad, P.S., Tsakiris, D.P.: \(G\)-Snakes: Nonholonomic Kinematic Chains on Lie Groups. ISR Technical Report (1994)

  • Lagrange, J.L.: Mécanique Analytique. Chez la Veuve Desaint, Paris (1788)

  • Marsden, J.E.: Lectures on Mechanics, London Mathematical Society Lecture Note Series 174. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  • Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Prentice Hall, Upper Saddle River (1983)

    MATH  Google Scholar 

  • Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry, Texts in Applied Mathematics, vol. 17, 2nd edn. Springer, New York (1999)

    Book  Google Scholar 

  • Neimark, JuI, Fufaev, N.A.: Dynamics of Nonholonomic Systems, Translations of Mathematical Monographs, vol. 33. AMS, Providence (1972)

    MATH  Google Scholar 

  • Omori, H.: Infinite-Dimensional Lie Groups, Translations of Mathematical Monographs, vol. 158. AMS, Providence (1997)

    Google Scholar 

  • Ostrowski, J., Lewis, A., Murray, R., Burdick, J.: Nonholonomic mechanics and locomotion: the snakeboard example. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 2391–2397. (1994)

  • Poincaré, H.: Sur une forme nouvelle des équations de la mécanique. CR Acad. Sci. 132, 369–371 (1901)

    MATH  Google Scholar 

  • Poincaré, H.: Sur la precession des corps deformables. Bull. Astron. 27, 321–356 (1910)

    Google Scholar 

  • Suslov, G.K.: Theoretical Mechanics, 3rd edn. GITTL, Moscow-Leningrad (1946)

    Google Scholar 

  • Teichmann, J.: A Frobenius Theorem on convenient manifolds. Monatshefte für Mathematik 134, 159–167 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Vankerschaver, J.: The momentum map for nonholonomic field theories with symmetry. Int. J. Geom. Meth. Mod. Phys. 2, 1029–1041 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Vankerschaver, J.: A class of nonholonomic kinematic constraints in elasticity. J. Phys. A: Math. Theor. 40, 3889–3913 (2007a)

    Article  MathSciNet  MATH  Google Scholar 

  • Vankerschaver, J.: (2007b), Continuous and Discrete Aspects of Lagrangian Field Theories with Nonholonomic Constraints. Ph.D. Thesis, Ghent University

  • Yoshimura, H., Marsden, J.E.: Dirac structures in lagrangian mechanics. Implicit lagrangian systems. J. Geom. Phys. 57, 133–156 (2006a)

    Article  MathSciNet  MATH  Google Scholar 

  • Yoshimura, H., Marsden, J.E.: Dirac structures in lagrangian mechanics. Variational structures. J. Geom. Phys. 57, 209–250 (2006b)

    Article  MathSciNet  MATH  Google Scholar 

  • Yoshimura, H., Marsden, J.E.: Reduction of dirac structures and the Hamilton–Pontryagin principle. Rep. Math. Phys. 60, 381–426 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Zenkov, D.V., Leok, M., Bloch, A.M.: Hamel’s Formalism and Variational Integrators on a Sphere. Proc. CDC 51, 7504–7510 (2012)

    Google Scholar 

Download references

Acknowledgments

We would like to thank Professors Yongxin Guo, Francois Gay-Balmaz, Vakhtang Putkaradze, and Tudor Ratiu for valuable discussions, and the reviewers for helpful remarks.

The research of AMB was partially supported by NSF Grants DMS-1207893, DMS-1613819, INSPIRE-1363720, and the Simons Foundations. The research of DS was partially supported by the China Scholarship Council. DS wishes to thank support and hospitality of North Carolina State University during his visit. The research of YBK was partially supported by NDSEG Fellowship. The research of DVZ was partially supported by NSF grants DMS-0908995 and DMS-1211454. DVZ would like to acknowledge support and hospitality of the Beijing Institute of Technology, where a part of this work was carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghua Shi.

Additional information

Communicated by Paul Newton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, D., Berchenko-Kogan, Y., Zenkov, D.V. et al. Hamel’s Formalism for Infinite-Dimensional Mechanical Systems. J Nonlinear Sci 27, 241–283 (2017). https://doi.org/10.1007/s00332-016-9332-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-016-9332-7

Keywords

Mathematics Subject Classification

Navigation