Skip to main content
Log in

Validation of mRNA/EST-based gene predictions in human Xp11.4 revealed differences to the organization of the orthologous mouse locus

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Careful manual annotation of the human reference sequence provides a solid basis for the identification of disease-associated genes. Toward this end, we focused on a medically relevant 2.6-Mb region of the human chromosome Xp11.4 between markers DXS9851 and DXS9751 and identified 16 transcription units according to the Vertebrate Genome Annotation (Vega) rules. In order to validate these annotations, we performed a comprehensive RT-PCR expression analysis and a human-mouse comparison. This revealed, despite the high overall genomic conservation of the region, remarkable differences of the gene content between human and mouse. Whereas 12 of 16 annotations were confirmed by RT-PCR in human tissues, for only seven genes mouse orthologs could be identified and found to be expressed. This indicates that a comprehensive and experimentally supported annotation effort of the human genome simultaneously highlights regions with striking differences in gene organization to other species and may indicate evolutionary events specific to the human lineage demanding further functional analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abidi FE, Holinski-Feder E, Rittinger O, Kooy F, Lubs HA, et al. (2002) A novel 2 bp deletion in the TM4SF2 gene is associated with MRX58. J Med Genet 39: 430–433

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410

    Article  PubMed  CAS  Google Scholar 

  • Ansari-Lari MA, Oeltjen JC, Schwartz S, Zhang Z, Muzny DM, et al. (1998) Comparative sequence analysis of a gene-rich cluster at human chromosome 12p13 and its syntenic region in mouse chromosome 6. Genome Res 8: 29–40

    PubMed  CAS  Google Scholar 

  • Ashurst JL, Chen CK, Gilbert JG, Jekosch K, Keenan S, et al. (2005) The Vertebrate Genome Annotation (Vega) database. Nucleic Acids Res 33(database issue): D459–D465

    PubMed  CAS  Google Scholar 

  • Berti C, Fontanella B, Ferrentino R, Meroni G (2004) Mig12, a novel Opitz syndrome gene product partner, is expressed in the embryonic ventral midline and co-operates with Mid1 to bundle and stabilize microtubules. BMC Cell Biol 5: 9

    Article  PubMed  Google Scholar 

  • Bonfield JK, Smith K, Staden R (1995) A new DNA sequence assembly program. Nucleic Acids Res 23: 4992–4999

    PubMed  CAS  Google Scholar 

  • C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282: 2012–2018

    Google Scholar 

  • Chao KM, Zhang J, Ostell J, Miller W (1995) A local alignment tool for very long DNA sequences. Comput Appl Biosci 11: 147–153

    PubMed  CAS  Google Scholar 

  • Cox TC, Allen LR, Cox LL, Hopwood B, Goodwin B, et al. (2000) New mutations in MID1 provide support for loss of function as the cause of X-linked Opitz syndrome. Hum Mol Genet 9: 2553–2562

    Article  PubMed  CAS  Google Scholar 

  • Demirci FY, Ramser J, White NJ, Rigatti BW, Meindl A, et al. (2003) Refinement of the physical location and the genomic characterization of the CRSP2 (EXLM1) gene on Xp11.4. DNA Seq 14: 123–127

    PubMed  CAS  Google Scholar 

  • Florea L, Hartzell G, Zhang Z, Rubin GM, Miller W (1998) A computer program for aligning a cDNA sequence with a genomic DNA sequence. Genome Res 8: 967–974

    PubMed  CAS  Google Scholar 

  • Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196: 261–282

    PubMed  CAS  Google Scholar 

  • Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, et al. (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428: 493–521

    PubMed  CAS  Google Scholar 

  • Gregory SG, Sekhon M, Schein J, Zhao S, Osoegawa K, et al. (2002) A physical map of the mouse genome. Nature 418: 743–750

    Article  PubMed  CAS  Google Scholar 

  • Hardison RC, Oeltjen J, Miller W (1997) Long human-mouse sequence alignments reveal novel regulatory elements: a reason to sequence the mouse genome. Genome Res 7: 959–966

    PubMed  CAS  Google Scholar 

  • Holinski-Feder E, Chahrockh-Zadeh S, Rittinger O, Jedele KB, Gasteiger M, et al. (1999) Nonsyndromic X-linked mental retardation: mapping of MRX58 to the pericentromeric region. Am J Med Genet 86: 102–106

    Article  PubMed  CAS  Google Scholar 

  • Horwich AL, Kraus JP, Williams K, Kalousek F, Konigsberg W, et al. (1983) Molecular cloning of the cDNA coding for rat ornithine transcarbamoylase. Proc Natl Acad Sci U S A 80: 4258–4262

    PubMed  CAS  Google Scholar 

  • International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431: 931–945

    Google Scholar 

  • Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12: 656–664

    PubMed  CAS  Google Scholar 

  • Koop BF (1995) Human and rodent DNA sequence comparisons: a mosaic model of genomic evolution. Trends Genet 11: 367–371

    Article  PubMed  CAS  Google Scholar 

  • Lewis BP, Green RE, Brenner SE (2003) Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci U S A 100: 189–192

    Article  PubMed  CAS  Google Scholar 

  • Mallon AM, Platzer M, Bate R, Gloeckner G, Botcherby MR, et al. (2000) Comparative genome sequence analysis of the Bpa/Str region in mouse and Man. Genome Res 10: 758–775

    Article  PubMed  CAS  Google Scholar 

  • Ng D, Thakker N, Corcoran CM, Donnai D, Perveen R, et al. (2004) Oculofaciocardiodental and Lenz microphthalmia syndromes result from distinct classes of mutations in BCOR. Nat Genet 36: 411–416

    Article  PubMed  CAS  Google Scholar 

  • Perry J, Feather S, Smith A, Palmer S, Ashworth A (1998) The human FXY gene is located within Xp22.3: implications for evolution of the mammalian X chromosome. Hum Mol Genet 7: 299–305

    Article  PubMed  CAS  Google Scholar 

  • Ramser J, Abidi FE, Burckle CA, Lenski C, Toriello H, et al. (2005) A unique exonic splice enhancer mutation in a family with X-linked mental retardation and epilepsy points to a novel role of the renin receptor. Hum Mol Genet 14: 1019–1027

    Article  PubMed  CAS  Google Scholar 

  • Robin NH, Feldman GJ, Aronson AL, Mitchell HF, Weksberg R, et al. (1995) Opitz syndrome is genetically heterogeneous, with one locus on Xp22, and a second locus on 22q11.2. Nat Genet 11: 459–461

    Article  PubMed  CAS  Google Scholar 

  • Ross MT, Grafham DV, Coffey AJ, Scherer S, McLay K, et al. (2005) The DNA sequence of the human X chromosome. Nature 434: 325–337

    Article  PubMed  CAS  Google Scholar 

  • Rozen R, Fox J, Fenton WA, Horwich AL, Rosenberg LE (1985) Gene deletion and restriction fragment length polymorphisms at the human ornithine transcarbamylase locus. Nature 313: 815–817

    Article  PubMed  CAS  Google Scholar 

  • Schwartz S, Zhang Z, Frazer KA, Smit A, Riemer C, et al. (2000) PipMaker—a web server for aligning two genomic DNA sequences. Genome Res 10: 577–586

    Article  PubMed  CAS  Google Scholar 

  • Searle SM, Gilbert J, Iyer V, Clamp M (2004) The otter annotation system. Genome Res 14: 963–970

    Article  PubMed  CAS  Google Scholar 

  • Taudien S, Rump A, Platzer M, Drescher B, Schattevoy R, et al. (2000) RUMMAGE—a high-throughput sequence annotation system. Trends Genet 16: 519–520

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya KD, Greally JM, Yi Y, Noel KP, Truong JP, et al. (2004) Comparative sequence and x–inactivation analyses of a domain of escape in human Xp11.2 and the conserved segment in mouse. Genome Res 14: 1275–1284

    Article  PubMed  CAS  Google Scholar 

  • Tuchman M (1993) Mutations and polymorphisms in the human ornithine transcarbamylase gene. Hum Mutat 2: 174–178

    Article  PubMed  CAS  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103–119

    Article  PubMed  CAS  Google Scholar 

  • Zemni R, Bienvenu T, Vinet MC, Sefiani A, Carrie A, et al. (2000) A new gene involved in X-linked mental retardation identified by analysis of an X;2 balanced translocation. Nat Genet 24: 167–170

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Elke Meier, Petra Eißmann, and Kathleen Seitz for excellent technical help in DNA sequencing and RT-PCR. They are grateful to Michael B. Gorin and associates at the University of Pittsburgh for offering three BACs, to the Whitehead Institute for Biomedical Research/MIT and the Washington University Genome Sequencing Center for providing working draft data of four BACs, and the Sanger Centre Hinxton, UK, for the finished sequence of one BAC. This work was supported by the German Ministry for Research and Education (BMBF, German Human Genome Project grant 01KW9916 to MP and 01KW9974 to AM) and by a grant from the European community (EC, QLG2-CT-1999-00791) to AM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Platzer.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, G., Ramser, J., Taudien, S. et al. Validation of mRNA/EST-based gene predictions in human Xp11.4 revealed differences to the organization of the orthologous mouse locus. Mamm Genome 16, 934–941 (2005). https://doi.org/10.1007/s00335-005-0090-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-005-0090-3

Keywords

Navigation