Skip to main content

Advertisement

Log in

Lipids of Indo-Pacific gorgonian corals are modified under the influence of microbial associations

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Gorgonian corals form complex interactions with a wide range of microorganisms, which play a key role in maintaining health of the holobiont. To assess the influence that various members of the microbial community exert on the coral lipidome, we analyzed storage (triacylglycerols (TG) and monoalkyldiacylglycerols) and structural (phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol and lyso-phosphatidylcholine) lipid molecular species. A molecular-genetics analysis showed that colonies of Junceella fragilis were associated with Symbiodinium clade C. Sequences of the parasitic dinoflagellate Blastodinium contortum were found in the gorgonian Dichotella sp. Colonies of Astrogorgia rubra were associated with the filiferan hydroid Hydrichthella epigorgia. Fungal sequences were found in Dichotella sp., A. rubra and Menella sp. A molecular species of ether phospholipids with fungal hydroxylated fatty acids (FA), bacterial odd-numbered FAs and alkyl moiety were detected in gorgonian lipids. As both host coral and some bacteria can synthesize ether lipids, a conclusion was drawn that lipids are likely to be transported from members of the microbial community to the coral host, and some molecular species with an odd-numbered alkyl moiety can be derived from anaerobic bacteria. The TG content of the symbiotic gorgonian J. fragilis was 30-fold higher than in asymbiotic gorgonians. TG 18:3/18:4/18:3 can be considered as a marker of zooxanthellae presence in coral. The hydroid H. epigorgia association did not have any evident contribution to the lipid profile of gorgonian A. rubra. Such markers of soft corals as 24:6n-3 and 24:5n-6 PUFAs were found to be distributed in molecular species of lipids of all the studied corals. A high content of these acids was observed as a characteristic feature in corals of the family Plexauridae (Menella sp. and A. rubra). The lipidomic approach allows assessment of the distribution of marker fatty acids in coral lipids, and to tracing the relationships between the microbial community and the coral host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ainsworth TD, Krause L, Bridge T, Torda G, Raina JB, Zakrzewski M, Gates RD, Padilla-Gamino JL, Spalding HL, Smith C, Woolsey ES, Bourne DG, Bongaerts P, Hoegh-Guldberg O, Leggat W (2015) The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J 9:2261–2274

    Article  CAS  Google Scholar 

  • Allemand D, Furla P (2018) How does an animal behave like a plant? Physiological and molecular adaptations of zooxanthellae and their hosts to symbiosis. C R Biol 341:276–280

    Article  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Alves-de-Souza C, Cornet C, Nowaczyk A, Gasparini S, Skovgaard A, Guillou L (2011) Blastodinium spp. infect copepods in the ultra-oligotrophic marine waters of the Mediterranean Sea. Biogeosciences 8:2125–2136

    Article  Google Scholar 

  • Angel JJS, Martell L, Palero F (2019) Polyps fishing on a crab: novel association between Hydrichthella epigorgia (Hydrozoa, Ptilocodiidae) and Achaeus (Crustacea, Inachidae). Mar Biodivers 49:11–23

    Article  Google Scholar 

  • Anisimova M, Gil M, Dufayard JF, Dessimoz C, Gascuel O (2011) Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst Biol 60:685–699

    Article  PubMed  PubMed Central  Google Scholar 

  • Awai K, Matsuoka R, Shioi Y (2012) Lipid and fatty acid compositions of Symbiodinium strains. In Proceedings of the 12th international coral reef symposium

  • Baker AC, Starger CJ, McClanahan TR, Glynn PW (2004) Corals’ adaptive response to climate change. Nature 430:741–741

    Article  CAS  PubMed  Google Scholar 

  • Bao J, Luo JF, Qin XC, Xu XY, Zhang XY, Tu ZC, Qi SH (2014) Dihydrothiophene-condensed chromones from a marine-derived fungus Penicillium oxalicum and their structure-bioactivity relationship. Bioorg Med Chem Lett 24:2433–2436

    Article  CAS  PubMed  Google Scholar 

  • Bao J, Sun YL, Zhang XY, Han Z, Gao HC, He F, Qian PY, Qi SH (2013) Antifouling and antibacterial polyketides from marine gorgonian coral-associated fungus Penicillium sp SCSGAF 0023. J Antibiot 66:219–223

    Article  CAS  Google Scholar 

  • Baptista M, Lopes VM, Pimentel MS, Bandarra N, Narciso L, Marques A, Rosa R (2012) Temporal fatty acid dynamics of the octocoral Veretillum cynomorium. Comp Biochem Physiol B-Biochem Mol Biol 161:178–187

    Article  CAS  PubMed  Google Scholar 

  • Bayer FM (1981) Key to the genera of Octocorallia exclusive of Pennatulacea (Coelenterata: Anthozoa), with diagnoses of new taxa. Proc Biol Soc Wash 94:902–947

    Google Scholar 

  • Beleneva IA, Dautova TI, Zhukova NV (2005) Characterization of communities of heterotrophic bacteria associated with healthy and diseased corals in Nha Trang Bay (Vietnam). Microbiology 74:579–587

    Article  CAS  Google Scholar 

  • Bishop DG, Kenrick JR (1980) Fatty acid composition of symbiotic zooxanthellae in relation to their hosts. Lipids 15:799–804

    Article  CAS  PubMed  Google Scholar 

  • Bo M, Di Camillo CG, Puce S, Canese S, Giusti M, Angiolillo M, Bavestrello G (2011) A tubulariid hydroid associated with anthozoan corals in the Mediterranean Sea. Ital J Zoolog 78:487–496

    Article  Google Scholar 

  • Bosh TV, Long PQ (2017) A comparison of the composition of wax ester molecular species of different coral groups (Subclasses Hexacorallia and Octocorallia). Russ J Mar Biol 43:471–478

    Article  CAS  Google Scholar 

  • Bourne DG, Morrow KM, Webster NS (2016) Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. In: Gottesman S (ed) Annual review of microbiology, vol 70, p 317. Annual Reviews, Palo Alto

    Google Scholar 

  • Byrdwell WC (2005) The bottom-up solution to the triacylglycerol lipidome using atmospheric pressure chemical ionization mass spectrometry. Lipids 40:383–417

    Article  CAS  PubMed  Google Scholar 

  • Chen H-K, Song S-N, Wang L-H, Mayfield AB, Chen Y-J, Chen W-NU, Chen C-S (2015) Compartmental comparison of major lipid species in a coral-Symbiodinium endosymbiosis: evidence that the coral host regulates lipogenesis of its cytosolic lipid bodies. PLoS ONE 10:e0132519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chinain M, Faust MA, Pauillac S (1999) Morphology and molecular analyses of three toxic species of Gambierdiscus (Dinophyceae): G-pacificus, sp nov., G-australes, sp nov., and G-polynesiensis, sp nov. J Phycol 35:1282–1296

    Article  Google Scholar 

  • Coleman AW, Suarez A, Goff LJ (1994) Molecular delineation of species and syngens in volvocacean green-algae (Chlorophyta). J Phycol 30:80–90

    Article  CAS  Google Scholar 

  • Correa AMS, Brandt ME, Smith TB, Thornhill DJ, Baker AC (2009) Symbiodinium associations with diseased and healthy scleractinian corals. Coral Reefs 28:437–448

    Article  Google Scholar 

  • Dalsgaard J, John MS, Kattner G, Muller-Navarra D, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment. Advances in Marine Biology 46:225–340

    Article  PubMed  Google Scholar 

  • Dayarathne MC, Jones EBG, Maharachchikumbura SSN, Devadatha B, Sarma VV, Khongphinitbunjong K, Chomnunti P, Hyde KD (2020) Morpho-molecular characterization of microfungi associated with marine based habitats. Mycosphere 11:1–188

    Article  Google Scholar 

  • Dean JM, Lodhi IJ (2018) Structural and functional roles of ether lipids. Protein Cell 9:196–206

    Article  CAS  PubMed  Google Scholar 

  • Devi P, Shridhar MPD, D’Souza L, Naik CG (2006) Cellular fatty acid composition of marine-derived fungi. Indian J Mar Sci 35:359–363

    CAS  Google Scholar 

  • Douglas AE (2003) Coral bleaching - how and why? Mar Pollut Bull 46:385–392

    Article  CAS  PubMed  Google Scholar 

  • Fabricius K, Alderslade P (2001) Soft corals and sea fans: a comprehensive guide to the tropical shallow water genera of the central-west Pacific, the Indian Ocean and the Red Sea. Australian Institute of Marine Science

    Google Scholar 

  • Feng C, Wei X, Hu JS, Wang SY, Liu BX, Xie ZY, Rong L, Li XH, Zhang CX (2020) Researches on the subergane-type sesquiterpenes from the soft coral-derived fungus Aspergillus sp. EGF15-0-3. Chin J Org Chem 40:1275–1280

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Sloane-Stanley GA (1957) A simple methods for the isolation and pyrification of total lipid extraction from animal tissue. J Biol Chem 226(1):497–509

    Article  CAS  PubMed  Google Scholar 

  • Frostegard A, Baath E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65

    Article  Google Scholar 

  • Garren M, Azam F (2012) Corals shed bacteria as a potential mechanism of resilience to organic matter enrichment. ISME J 6:1159–1165

    Article  CAS  PubMed  Google Scholar 

  • Goulet TL, Shirur KP, Ramsby BD, Iglesias-Prieto R (2017) The effects of elevated seawater temperatures on Caribbean gorgonian corals and their algal symbionts, Symbiodinium spp. PLoS ONE 12:21

    Article  CAS  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Hamoutene D, Puestow T, Miller-Banoub J, Wareham V (2008) Main lipid classes in some species of deep-sea corals in the Newfoundl and and Labrador region (Northwest Atlantic Ocean). Coral Reefs 27:237–246

    Article  Google Scholar 

  • Haubert D, Haggblom MM, Langel R, Scheu S, Ruess L (2006) Trophic shift of stable isotopes and fatty acids in Collembola on bacterial diets. Soil Biol Biochem 38:2004–2007

    Article  CAS  Google Scholar 

  • Hernandez-Agreda A, Gates RD, Ainsworth TD (2017) Defining the core microbiome in corals’ microbial soup. Trends Microbiol 25:125–140

    Article  CAS  PubMed  Google Scholar 

  • Hester ER, Barott KL, Nulton J, Vermeij MJA, Rohwer FL (2016) Stable and sporadic symbiotic communities of coral and algal holobionts. ISME J 10:1157–1169

    Article  CAS  PubMed  Google Scholar 

  • Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2018) UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35:518–522

    Article  CAS  PubMed  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Google Scholar 

  • Hou XM, Wang CY, Gu YC, Shao CL (2016) Penimethavone A, a flavone from a gorgonian-derived fungus Penicillium chrysogenum. Nat Prod Res 30:2274–2277

    Article  CAS  PubMed  Google Scholar 

  • Imbs AB (2013) Fatty acids and other lipids of corals: composition, distribution, and biosynthesis. Russ J Mar Biol 39:153–168

    Article  CAS  Google Scholar 

  • Imbs AB, Dang LTP (2017) The molecular species of phospholipids of the cold-water soft coral Gersemia rubiformis (Ehrenberg, 1834) (Alcyonacea, Nephtheidae). Russ J Mar Biol 43:239–244

    Article  CAS  Google Scholar 

  • Imbs AB, Latyshev NA, Zhukova NV, Dautova TN (2007) Comparison of fatty acid compositions of azooxanthellate Dendronephthya and zooxanthellate soft coral species. Comp Biochem Physiol 148B:314–321

    Article  CAS  Google Scholar 

  • Imbs AB, Demidkova DA, Dautova TN, Latyshev NA (2009) Fatty acid biomarkers of symbionts and unusual inhibition of tetracosapolyenoic acid biosynthesis in corals (Octocorallia). Lipids 44:325–335

    Article  CAS  PubMed  Google Scholar 

  • Imbs AB, Yakovleva IM, Pham LQ (2010a) Distribution of lipids and fatty acids in the zooxanthellae and host of the soft coral Sinularia sp. Fisheries Science 76:375–380

    Article  CAS  Google Scholar 

  • Imbs AB, Latyshev NA, Dautova TN, Latypov YY (2010b) Distribution of lipids and fatty acids in corals by their taxonomic position and presence of zooxanthellae. Mar Ecol-Prog Ser 409:65–75

    Article  CAS  Google Scholar 

  • Imbs AB, Dang LPT, Rybin VG, Nguyen NT, Pham LQ (2015) Distribution of very-long-chain fatty acids between molecular species of different phospholipid classes of two soft corals. Biochemistry & Analitycal Biochemistry 4:205

    Google Scholar 

  • Imbs AB, Dang LPT, Nguyen KB (2019) Comparative lipidomic analysis of phospholipids of hydrocorals and corals from tropical and cold-water regions. PLoS ONE 14:22

    Article  CAS  Google Scholar 

  • Jackson DR, Cassilly CD, Plichta DR, Vlamakis H, Liu H, Melville SB, Xavier RJ, Clardy J (2021) Plasmalogen biosynthesis by anaerobic bacteria: identification of a two-gene operon responsible for plasmalogen production in Clostridium perfringens. ACS Chem Biol 16:6–13

    Article  CAS  PubMed  Google Scholar 

  • Janouskovec J, Horak A, Barott KL, Rohwer FL, Keeling PJ (2012) Global analysis of plastid diversity reveals apicomplexan-related lineages in coral reefs. Curr Biol 22:R518–R519

    Article  CAS  PubMed  Google Scholar 

  • Jeong HJ, Lee SY, Kang NS, Du Yoo Y, Lim AS, Lee MJ, Kim HS, Yih W, Yamashita H, LaJeunesse TC (2014) Genetics and morphology characterize the dinoflagellate Symbiodinium voratum, n. sp., (Dinophyceae) as the sole representative of Symbiodinium clade e. J Eukaryot Microbiol 61:75–94

    Article  CAS  PubMed  Google Scholar 

  • Kahng SE, Akkaynak D, Shlesinger T, Hochberg EJ, Wiedenmann J, Tamir R, Tchernov D (2019) Light, temperature, photosynthesis, heterotrophy, and the lower depth limits of mesophotic coral ecosystems. Mesophotic Coral Ecosyst 12:801–828

    Article  Google Scholar 

  • Kaneda T (1991) Iso-fatty and anteiso-fatty acids in bacteria – biosynthesis, function, and taxonomic significance. Microbiological Reviews 55:288–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Rozewicki J, Yamada KD (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. https://mafft.cbrc.jp/alignment/server/

  • Khotimchenko SV (2003) Lipids of marine macrophytic algae and grasses: structure, distribution, analysis. Dalnauka, Vladivostok

    Google Scholar 

  • Khudyakova YV, Sobolevskaya MP, Smetanina OF, Slinkina NN, Pivkin MV, Moiseenko OP, Kuznetsova TA (2009) Fatty-acid composition of certain species of marine mycelial fungi. Chemistry of Natural Compounds 45:18–20

    Article  CAS  Google Scholar 

  • LaJeunesse TC, Trench RK (2000) Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). Biol Bull 199:126–134

    Article  CAS  PubMed  Google Scholar 

  • Leblond JD, Chapman PJ (2000) Lipid class distribution of highly unsaturated long chain fatty acids in marine dinoflagellates. J Phycol 36:1103–1108

    Article  CAS  Google Scholar 

  • Leblond JD, Khadka M, Duong L, Dahmen JL (2015) Squishy lipids: temperature effects on the betaine and galactolipid profiles of a C-18/C-18 peridinin-containing dinoflagellate, Symbiodinium microadriaticum (Dinophyceae), isolated from the mangrove jellyfish Cassiopea xamachana. Phycol Res 63:219–230

    Article  CAS  Google Scholar 

  • Leggat W, Ainsworth T, Bythell J, Dove S, Gates R, Hoegh-Guldberg O, Iglesias-Prieto R, Yellowlees D (2007) The hologenome theory disregards the coral holobiont. Nat Rev Microbiol 5:1

    Article  CAS  Google Scholar 

  • Liang ZY, Shen NX, Zheng YY, Wu JT, Miao L, Fu XM, Chen M, Wang CY (2019) Two new unsaturated fatty acids from the mangrove rhizosphere soil-derived fungus Penicillium javanicum HK1-22. Bioorganic Chem 93:5

    Article  CAS  Google Scholar 

  • Liu ZM, Qiu P, Liu HJ, Li J, Shao CL, Yan T, Cao WH, She ZG (2019) Identification of anti-inflammatory polyketides from the coral-derived fungus Penicillium sclerotiorin: in vitro approaches and molecular-modeling. Bioorganic Chem 88:7

    Article  Google Scholar 

  • Loh WKW, Loi T, Carter D, Hoegh-Guldberg O (2001) Genetic variability of the symbiotic dinoflagellates from the wide ranging coral species Seriatopora hystrix and Acropora longicyathus in the Indo-West Pacific. Mar Ecol-Prog Ser 222:97–107

    Article  Google Scholar 

  • Lopes AR, Baptista M, Rosa IC, Dionisio G, Gomes-Pereira J, Paula JR, Figueiredo C, Bandarra N, Calado R, Rosa R (2016) “Gone with the wind”: fatty acid biomarkers and chemotaxonomy of stranded pleustonic hydrozoans (Velella velella and Physalia physalis). Biochem Syst Ecol 66:297–306

    Article  CAS  Google Scholar 

  • Ma X, Liang X, Huang ZH, Qi SH (2020) New alkaloids and isocoumarins from the marine gorgonian-derived fungus Aspergillus sp. SCSIO 41501. Nat Prod Res 34:1992–2000

    Article  CAS  PubMed  Google Scholar 

  • McFadden CS, Brown AS, Brayton C, Hunt CB, van Ofwegen LP (2014) Application of DNA barcoding in biodiversity studies of shallow-water octocorals: molecular proxies agree with morphological estimates of species richness in Palau. Coral Reefs 33:275–286

    Google Scholar 

  • Muscatine L (1967) Glycerol excretion by symbiotic algae from corals and tridacna and its control by the host. Science 156:516–519

    Article  CAS  PubMed  Google Scholar 

  • Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274

    Article  CAS  PubMed  Google Scholar 

  • Ostachowska A, Stepnowski P, Golebiowski M (2017) Dicarboxylic acids and hydroxy fatty acids in different species of fungi. Chem Pap 71:999–1005

    Article  CAS  Google Scholar 

  • Pollierer MM, Scheu S, Haubert D (2010) Taking it to the next level: trophic transfer of marker fatty acids from basal resource to predators. Soil Biol Biochem 42:919–925

    Article  CAS  Google Scholar 

  • Puce S, Calcinai B, Bavestrello G, Cerrano C, Gravili C, Boero F (2005) Hydrozoa (Cnidaria) symbiotic with Porifera: a review. Mar Ecol-Evol Perspect 26:73–81

    Article  Google Scholar 

  • Puce S, Di Camillo CG, Bavestrello G (2008) Hydroids symbiotic with octocorals from the Sulawesi Sea, Indonesia. J Mar Biol Assoc UK 88:1643–1654

    Article  Google Scholar 

  • Řezanka T, Sigler K (2009) Odd-numbered very-long-chain fatty acids from the microbial, animal and plant kingdoms. Prog Lipid Res 48:206–238

    Article  PubMed  CAS  Google Scholar 

  • Řezanka T, Siristova L, Matoulková D, Sigler K (2011) Hydrophilic interaction liquid chromatography: ESI–MS/MS of plasmalogen phospholipids from pectinatus bacterium. Lipids 46:765–780

    Article  PubMed  CAS  Google Scholar 

  • Rohde K (2005) Marine parasitology. Csiro Publishing, Collingwood

    Book  Google Scholar 

  • Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol-Prog Ser 243:1–10

    Article  Google Scholar 

  • Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362

    Article  CAS  PubMed  Google Scholar 

  • Sanchez JA, Duenas LF, Rowley SJ, Gonzalez-Zapata FL, Vergara DC, Montano-Salazar SM, Calixto-Botia I, Gomez CE, Abeytia R, Colin PL, Cordeiro RTS, Perez CD (2019) Gorgonian corals. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, Cham, pp 729–747

    Chapter  Google Scholar 

  • Sánchez JA, Wirshing H (2005) A field key to the identification of tropical western atlantic zooxanthellate octocorals (Octocorallia: Cnidaria). Caribb J Sci 41:508–522

    Google Scholar 

  • Scholin CA, Herzog M, Sogin M, Anderson DM (1994) Identification of group-specific and strain-specific genetic-markers for globally distributed Alexandrium (Dinophyceae). Sequence-analysis of a fragment of the LSU ribosomal-RNA gene. J Phycol 30:999–1011

    Article  CAS  Google Scholar 

  • Schuchert P (2019) The hydroid of the medusa Lizzia blondina Forbes, 1848. Mar Biodivers 49:1683–1693

    Article  Google Scholar 

  • Sikorskaya TV, Imbs AB (2018) Study of total lipidome of the Sinularia siaesensis soft coral. Russ J Bioorg Chem 44:712–723

    Article  CAS  Google Scholar 

  • Sikorskaya TV, Ermolenko EV, Imbs AB (2020) Effect of experimental thermal stress on lipidomes of the soft coral Sinularia sp. and its symbiotic dinoflagellates. J Exp Mar Biol Ecol 524:151295

    Article  Google Scholar 

  • Sikorskaya TV, Efimova KV, Imbs AB (2021) Lipidomes of phylogenetically different symbiotic dinoflagellates of corals. Phytochemistry 181:112579

    Article  CAS  PubMed  Google Scholar 

  • Skovgaard A, Massana R, Saiz E (2007) Parasitic species of the genus Blastodinium (Blastodiniphyceae) are peridinioid dinoflagellates. J Phycol 43:553–560

    Article  Google Scholar 

  • Spalding MD, Grenfell AM (1997) New estimates of global and regional coral reef areas. Coral Reefs 16:225–230

    Article  Google Scholar 

  • Suutari M (1995) Effect of growth temperature on lipid fatty acids of 4 fungi (Aspergillus niger. Neurospora crassa, Penicillium chrysogenum, and Trichoderma reesei). Archives of Microbiology 164:212–216

    Article  CAS  Google Scholar 

  • Svetashev VI, Vysotskii MV (1998) Fatty acids of Heliopora coerulea and chemotaxonomic significance of tetracosapolyenoic acids in coelenterates. Comp Biochem Physiol B-Biochem Mol Biol 119:73–75

    Article  Google Scholar 

  • Tang CH, Lin CY, Lee SH, Wang WH (2017) Membrane lipid profiles of coral responded to zinc oxide nanoparticle-induced perturbations on the cellular membrane. Aquat Toxicol 187:72–81

    Article  CAS  PubMed  Google Scholar 

  • Tang CH, Shi SH, Lin CY, Li HH, Wang WH (2019) Using lipidomic methodology to characterize coral response to herbicide contamination and develop an early biomonitoring model. Sci Total Environ 648:1275–1283

    Article  CAS  PubMed  Google Scholar 

  • Toledo-Hernandez C, Bones-Gonzalez A, Ortiz-Vazquez OE, Sabat AM, Bayman P (2007) Fungi in the sea fan Gorgonia ventalina: diversity and sampling strategies. Coral Reefs 26:725–730

    Article  Google Scholar 

  • Treignier C, Grover R, Ferrier-Pages C, Tolosa I (2008) Effect of light and feeding on the fatty acid and sterol composition of zooxanthellae and host tissue isolated from the scleractinian coral Turbinaria reniformis. Limnol Oceanogr 53:2702–2710

    Article  CAS  Google Scholar 

  • Vaskovsky VE, Kostetsky EY, Vasendin IM (1975) A universal reagent for phospholipid analysis. J Chromatogr 114:129–141

    Article  CAS  PubMed  Google Scholar 

  • Venn AA, Loram JE, Douglas AE (2008) Photosynthetic symbioses in animals. Journal of Experimental Botany 59:1069–1080

    Article  CAS  PubMed  Google Scholar 

  • Vítová M, Palyzová A, Řezanka T (2021) Plasmalogens - ubiquitous molecules occurring widely, from anaerobic bacteria to humans. Prog Lipid Res 83:101111

    Article  PubMed  CAS  Google Scholar 

  • Wang YN, Shao CL, Zheng CJ, Chen YY, Wang CY (2011) Diversity and antibacterial activities of fungi derived from the gorgonian Echinogorgia rebekka from the South China Sea. Mar Drugs 9:1379–1390

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang JF, Lei PP, Wang Y, Wang H, Li J, Zhuang YB, Zhu WM (2012) Antimicrobial aromatic polyketides from gorgonian-associated fungus, Penicillium commune 518. Chin J Chem 30:1236–1242

    Article  CAS  Google Scholar 

  • Wang ZY, Jia JY, Wang L, Li F, Wang YL, Jiang YZ, Song XW, Qin SR, Zheng K, Ye J, Ren Z, Wang YF, Qi SH (2020) Anti-HSV-1 activity of Aspergillipeptide D, a cyclic pentapepetide isolated from fungus Aspergillus sp. SCSIO 41501. Virol J 17:9

    Google Scholar 

  • Wegley L, Edwards R, Rodriguez-Brito B, Liu H, Rohwer F (2007) Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ Microbiol 9:2707–2719

    Article  CAS  PubMed  Google Scholar 

  • Weis VM (2008) Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211:3059–3066

    Article  CAS  PubMed  Google Scholar 

  • Welch DF (1991) Applications of cellular fatty acid analysis. Clin Microbiol Rev 4:422–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu NN, Hou XM, Wei MY, Zheng JY, Shao CL (2019) Antifungal and antibacterial activities of azaphilones from the gorgonian-derived Penicillium sclerotiorum Fungus. Chemistry of Natural Compounds 55:549–551

    Article  CAS  Google Scholar 

  • Yorifuji M, Takeshima H, Mabuchi K, Watanabe T, Nishida M (2015) Comparison of Symbiodinium dinoflagellate flora in sea slug populations of the Pteraeolidia ianthina complex. Mar Ecol-Prog Ser 521:91–104

    Article  CAS  Google Scholar 

  • Zar J (1999) Biostatistical analysis. Prentice Hall

    Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fertil Soils 29:111–129

    Article  CAS  Google Scholar 

  • Zhang XY, Hao HL, Lau SCK, Wang HY, Han Y, Dong LM, Huang RM (2019) Biodiversity and antifouling activity of fungi associated with two soft corals from the South China Sea. Archives of Microbiology 201:757–767

    Article  CAS  PubMed  Google Scholar 

  • Zhao DL, Shao CL, Zhang Q, Wang KL, Guan FF, Shi T, Wang CY (2015) Azaphilone and diphenyl ether derivatives from a gorgonian-derived strain of the fungus Penicillium pinophilum. J Nat Prod 78:2310–2314

    Article  CAS  PubMed  Google Scholar 

  • Zuluaga-Montero A, Toledo-Hernandez C, Rodriguez JA, Sabat AM, Bayman P (2010) Spatial variation in fungal communities isolated from healthy and diseased sea fans Gorgonia ventalina and seawater. Aquat Biol 8:151–160

    Article  Google Scholar 

Download references

Funding

The funders had no role in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; and in the decision to publish the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana V. Sikorskaya.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topic Editor Simon Davy

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3070 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sikorskaya, T.V., Ermolenko, E.V. & Efimova, K.V. Lipids of Indo-Pacific gorgonian corals are modified under the influence of microbial associations. Coral Reefs 41, 277–291 (2022). https://doi.org/10.1007/s00338-022-02222-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-022-02222-1

Keywords

Navigation