Skip to main content
Log in

Plasmon-enhanced fluorescence near metallic nanostructures: biochemical applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Amplification of fluorescence is a nanoscale phenomenon which is particularly pronounced in close proximity to metal nanostructures. Due to its sharp distance dependence, it is ideally suited to monitor biorecognition reactions. Using this effect we have been able to demonstrate ultrasensitive bioassays. Two types of metal nanostructures have been employed, nanometric silver islands deposited over an ultrathin metal mirror and silver fractal structures. For the first type, metal mirrors (aluminum, gold, or silver protected with a thin silica layer) were coated with SIFs and an immunoassay (model assay for rabbit IgG or myoglobin immunoassay) was performed on this surface using fluorescently labeled antibodies. Our results show that SIFs alone (on a glass surface not coated with metal) enhance the immunoassay signal approximately 3 to 10-fold. Using a metal mirror instead of glass as support for SIFs leads to up to 50-fold signal enhancement. The second type of metal nanostructures, silver fractals, were produced by electrochemical reduction of silver nitrate deposited on sapphire covered with a thin conductive film of indium tin oxide. These structures were used as a substrate for a model rabbit IgG bioassay. The fluorescence resulting from the binding of antibody labeled with Rhodamine was highly nonuniform with distinctive hot spots. These highly fluorescent regions were correlated with areas of higher Ag thickness and coverage. Such high values of fluorescence amplification in both types of nanostructures have been interpreted by using time-resolved fluorescence data and by considering the radiative properties of plasmons in the environments which promote plasmon coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, C.D. Geddes, Appl. Phys. 36, 240 (2003)

    Google Scholar 

  2. J.R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, I. Gryczynski, Anal. Biochem. 301, 261 (2002)

    Article  Google Scholar 

  3. B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F.R. Aussenegg, Appl. Phys. Lett. 79, 51 (2001)

    Article  ADS  Google Scholar 

  4. H.X. Xu, Phys. Lett. A 312, 411 (2003)

    Article  ADS  Google Scholar 

  5. J. Zhang, J. Malicka, I. Gryczynski, J.R. Lakowicz, J. Phys. Chem. B 109, 7643 (2005)

    Article  Google Scholar 

  6. J.R. Lakowicz, J. Malicka, S. D’Auria, I. Gryczynski, Anal. Biochem. 320, 13 (2003)

    Article  Google Scholar 

  7. F. Xie, M. Baker, E. Goldys, J. Phys. Chem. B 110, 23085 (2006)

    Article  Google Scholar 

  8. E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, J.R. Lakowicz, Anal. Biochem. 334, 303 (2004)

    Article  Google Scholar 

  9. E.G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K.W. Berndt, J.R. Lakowicz, J. Fluoresc. 15, 865 (2005)

    Google Scholar 

  10. J.R. Lakowicz, I. Gryczynski, J. Malicka, J. Lukomska, S. Makowiec, E. Matveeva, K. Nowaczyk, Z. Gryczynski, Biophys. J. 88, 163A (2005)

    Google Scholar 

  11. H.R. Stuart, D.G. Hall, Phys. Rev. Lett. 80, 5663 (1998)

    Article  ADS  Google Scholar 

  12. Y. Sawada, A. Dougherty, P. Gollub, Phys. Rev. Lett. 56, 1260 (1986)

    Article  ADS  Google Scholar 

  13. C.D. Geddes, A. Parfenov, D. Roll, I. Gryczynski, J. Malicka, J.R. Lakowicz, J. Fluoresc. 13, 267 (1995)

    Google Scholar 

  14. A. Doron, E. Katz, I. Willner, Langmuir 11, 1313 (1995)

    Article  Google Scholar 

  15. J.R. Lakowicz, J. Malicka, S. Dauria, I. Gryczynski, Anal. Biochem. 320, 13 (2003)

    Article  Google Scholar 

  16. J.-H. Song, T. Atay, S. Shi, H. Urabe, A.V. Nurmikko, Nano Lett. 5, 1557 (2005)

    Article  Google Scholar 

  17. E. Matveeva, Z. Gryczynski, J.R. Lakowicz, J. Immunol. Methods 302, 26 (2005)

    Article  Google Scholar 

  18. F. De Martini, G. Innocenti, G.R. Jacobovitz, P. Mataloni, Phys. Rev. Lett. 59, 2955 (1987)

    Article  ADS  Google Scholar 

  19. U. Dorner, P. Zoller, Phys. Rev. A 66, 023816-1 (2002)

    Google Scholar 

  20. J. Eschner, Lett. Nature 413, 495 (2001)

    Google Scholar 

  21. www.rsoftdesign.com, Feb. 2007

  22. E.C. Le Ru, P.G. Etchegoin, http://arxiv.org/abs/physics/0509154

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E.M. Goldys.

Additional information

PACS

87.64.Ni; 81.07.-b; 87.14.-g

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldys, E., Barnett, A., Xie, F. et al. Plasmon-enhanced fluorescence near metallic nanostructures: biochemical applications. Appl. Phys. A 89, 265–271 (2007). https://doi.org/10.1007/s00339-007-4100-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4100-z

Keywords

Navigation