Skip to main content
Log in

Absence of morphotropic phase boundary effects in BiFeO3–PbTiO3 thin films grown via a chemical multilayer deposition method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report an unusual behavior observed in (BiFeO3)1−x –(PbTiO3) x (BF–xPT) thin films prepared using a multilayer chemical solution deposition method. Films of different compositions were grown by depositing several bilayers of BF and PT precursors of varying BF and PT layer thicknesses followed by heat treatment in air. X-ray diffraction showed that samples of all compositions show mixing of two compounds resulting in a single-phase mixture, also confirmed by transmission electron microscopy. In contrast to bulk compositions, samples show a monoclinic (MA-type) structure suggesting disappearance of the morphotropic phase boundary (MPB) at x=0.30 as observed in the bulk. This is accompanied by the lack of any enhancement of the remanent polarization at the MPB, as shown by the ferroelectric measurements. Magnetic measurements showed an increase in the magnetization of the samples with increasing BF content. Significant magnetization in the samples indicates melting of spin spirals in the BF–xPT films, arising from a random distribution of iron atoms. Absence of Fe2+ ions was corroborated by X-ray photoelectron spectroscopy measurements. The results illustrate that thin film processing methodology significantly changes the structural evolution, in contrast to predictions from the equilibrium phase diagram, besides modifying the functional characteristics of the BP-xPT system dramatically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299(5613), 1719 (2003)

    Article  ADS  Google Scholar 

  2. S.A. Fedulov, P.B. Ladyzhinskii, I.L. Pyatigorskaya, Y.N. Venevtsev, Sov. Phys. Solid State 6(2), 375 (1964)

    Google Scholar 

  3. M.M. Kumar, A. Srinivas, S.V. Suryanarayana, T. Bhimasankaram, Phys. Status Solidi, A Appl. Res. 165(1), 317 (1998)

    Article  ADS  Google Scholar 

  4. S. Bhattacharjee, V. Pandey, R.K. Kotnala, D. Pandey, Appl. Phys. Lett. 94(1), 012906 (2009)

    Article  ADS  Google Scholar 

  5. W.-M. Zhu, H.-Y. Guo, Z.-G. Ye, Phys. Rev. B 78, 014401 (2008)

    Article  ADS  Google Scholar 

  6. S. Bhattacharjee, D. Pandey, J. Appl. Phys. 107(12), 124112 (2010)

    Article  ADS  Google Scholar 

  7. S. Bhattacharjee, S. Tripathi, D. Pandey, Appl. Phys. Lett. 91(4), 042903 (2007)

    Article  ADS  Google Scholar 

  8. W. Kaczmarek, Z. Pajak, M. Polomska, Solid State Commun. 17(7), 4 (1975)

    Google Scholar 

  9. V. Sunder, A. Halliyal, A.M. Umarji, J. Mater. Res. 10(5), 1301 (1995)

    Article  ADS  Google Scholar 

  10. W. Sakamoto, H. Yamazaki, A. Iwata, T. Shimura, T. Yogo, Jpn. J. Appl. Phys. 45(9B), 7315 (2006)

    Article  ADS  Google Scholar 

  11. M.A. Khan, T.P. Comyn, A.J. Bell, Appl. Phys. Lett. 91(3), 032901 (2007)

    Article  ADS  Google Scholar 

  12. S. Gupta, A. Garg, D.C. Agrawal, S. Bhattacharjee, D. Pandey, J. Appl. Phys. 105(1), 014101 (2009)

    Article  ADS  Google Scholar 

  13. D. Vanderbilt, M.H. Cohen, Phys. Rev. B 63(9), 094108 (2001)

    Article  ADS  Google Scholar 

  14. G. Catalan, A. Janssens, G. Rispens, S. Csiszar, O. Seeck, G. Rijnders, D.H.A. Blank, B. Noheda, Phys. Rev. Lett. 96(12), 127602 (2006)

    Article  ADS  Google Scholar 

  15. G. Xu, J. Li, D. Viehland, Appl. Phys. Lett. 89(22), 222901 (2006)

    Article  ADS  Google Scholar 

  16. L. Bi, A.R. Taussig, H.-S. Kim, L. Wang, G.F. Dionne, D. Bono, K. Persson, G. Ceder, C.A. Ross, Phys. Rev. B 78(10), 104106 (2008)

    Article  ADS  Google Scholar 

  17. R.A.M. Gotardo, I.A. Santos, L.F. Cótica, É.R. Botero, D. Garcia, J.A. Eiras, Scr. Mater. 61(5), 508 (2009)

    Article  Google Scholar 

  18. D. Lebeugle, D. Colson, A. Forget, M. Viret, P. Bonville, J.F. Marucco, S. Fusil, Phys. Rev. B 76(2), 024116 (2007)

    Article  ADS  Google Scholar 

  19. W. Eerenstein, F.D. Morrison, J. Dho, M.G. Blamire, J.F. Scott, N.D. Mathur, Science 307, 1203a (2005)

    Article  Google Scholar 

  20. A.M. Kadomtseva, A.K. Zvezdin, Y.F. Popov, A.P. Pyatakov, G.P. Vorob’ev, JETP Lett. 79(11), 571 (2004)

    Article  ADS  Google Scholar 

  21. Z.V. Gabbasova, M.D. Kuzmin, A.K. Zvezdin, I.S. Dubenko, V.A. Murashov, D.N. Rakov, I.B. Krynetsky, Phys. Lett. A 158(9), 491 (1991)

    Article  ADS  Google Scholar 

  22. T. Schedel-Niedrig, W. Weiss, R. Schlögl, Phys. Rev. B 52(24), 17449 (1995)

    Article  ADS  Google Scholar 

  23. H. Bea, M. Bibes, A. Barthelemy, K. Bouzehouane, E. Jacquet, A. Khodan, J.P. Contour, S. Fusil, F. Wyczisk, A. Forget, D. Lebeugle, D. Colson, M. Viret, Appl. Phys. Lett. 87(7), 072508 (2005)

    Article  ADS  Google Scholar 

  24. M.P. Morales, S. Veintemillas-Verdaguer, M.I. Montero, C.J. Serna, A. Roig, L. Casas, B. Martinez, F. Sandiumenge, Chem. Mater. 11(11), 3058 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Garg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S., Bhattacharjee, S., Pandey, D. et al. Absence of morphotropic phase boundary effects in BiFeO3–PbTiO3 thin films grown via a chemical multilayer deposition method. Appl. Phys. A 104, 395–400 (2011). https://doi.org/10.1007/s00339-010-6163-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-6163-5

Keywords

Navigation