Skip to main content
Log in

Synthesis of nano-NiXFe2O4 (X = Mg/Co) by citrate-gel method: structural, morphological and low-temperature magnetic properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A series of Mg-doped NiFe2O4 (NMF) and Co-doped NiFe2O4 (NCF) nanoparticles were synthesized via citrate-gel method. The X-ray diffraction patterns of conventionally heated NMF and NCF nanoparticles confirmed the formation of single-phase cubic spinel structures. Further, the variation of structural parameters as a function of compositions was described. The morphology of NMF and NCF materials was investigated using scanning and transmission electron microscopes (SEM and TEM). In addition, the formation of tetrahedral (A-site) and octahedral (B-site) locations of NMF and NCF was obtained from the Fourier transform infrared spectra (FTIR). Furthermore, the room- and low-temperature magnetic properties were studied for NMF and NCF nanoparticles using magnetization versus magnetic field (M-H) loops and zero field cooled (ZFC) and field cooled (FC) curves, respectively. The results revealed that NMF and NCF nanoparticles exhibited superparamagnetic (SPM) nature at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. N. Boda, K.C.B. Naidu, K.M. Batoo, G.H.R. Joice, J.L. Naik, D. Ravinder, Structural, morphological and electronic properties of cadmium cobalt ferrite nanoparticles. Biointerface Res Appl Chem 10, 4752–4763 (2020)

    Google Scholar 

  2. U. Naresh, R.J. Kumar, K.C.B. Naidu, Optical, magnetic and ferroelectric properties of Ba0.2Cu0.8-xLaxFe2O4 (x = 0.2 − 0.6) nanoparticles. Ceram Int 45, 7515–7523 (2019)

    Article  Google Scholar 

  3. K.K. Kefeni, B.B. Mamba, T.A.M. Msagati, Application of spinel ferrite nanoparticles in water and waste water treatment: a review. Sep Purif Technol 188, 399–422 (2017)

    Article  Google Scholar 

  4. N. Boda, G. Boda, K.C.B. Naidu, M. Srinivas, K.M. Batoo, D. Ravinder, A.P. Reddy, Effect of rare earth elements on low temperature magnetic properties of Ni and Co-ferrite nanoparticles. J Magn Magn Mater 473, 228–235 (2019)

    Article  ADS  Google Scholar 

  5. K.C.B. Naidu, N.S. Kumar, G.R. Kumar et al., Temperature and frequency dependence of complex impedance parameters of microwave sintered NiMg ferrites. J Aust Ceram Soc 55, 541–548 (2019)

    Article  Google Scholar 

  6. D. Sivakumar, K.C.B. Naidu, K.P. Nazeer, M.M. Rafi, G. Rameshkumar, B. Sathyaseelan, G. Killivalavan, A.A. Begam, Structural characterization and dielectric properties of superparamagnetic iron oxide nanoparticles. J Korean Ceram Soc 55, 230–238 (2018)

    Article  Google Scholar 

  7. D.S. Kumar, K.C.B. Naidu, M.M. Rafi, K.P. Nazeer, A.A. Begam, G.R. Kumar, Structural and dielectric properties of superparamagnetic iron oxide nanoparticles (SPIONs) stabilized by sugar solutions. Mater Sci Pol 36, 123–133 (2018)

    Article  ADS  Google Scholar 

  8. N.R. Ram, M. Prakash, U. Naresh, N.S. Kumar, T.S. Sarmash, T. Subbarao, R.J. Kumar, G.R. Kumar, K.C.B. Naidu, Review on magnetocaloric effect and materials. J Supercond Nov Magn 31, 1971–1979 (2018)

    Article  Google Scholar 

  9. T. Ramaprasad, R.J. Kumar, U. Naresh, M. Prakash, D. Kothandan, K.C.B. Naidu, Effect of pH value on structural and magnetic properties of CuFe2O4 nanoparticles synthesized by low temperature hydrothermal technique. Mater Res Express 5, 095025 (2018)

    Article  Google Scholar 

  10. D. Kumar, D.B. Das, R. Gopalan, Effects of surfactant on the structural and magnetic properties of hydrothermally synthesized NiFe2O4 nanoparticles. Mater Chem Phys 218, 70–76 (2018)

    Article  Google Scholar 

  11. B. Aslibeiki, G. Varvaro, D. Peddis, P. Kameli, Particle size, spin wave and surface effects on magnetic properties of MgFe2O4 nanoparticles. J Magn Magn Mater 422, 7–12 (2017)

    Article  ADS  Google Scholar 

  12. N. Kaur, M. Kaur, Envisioning the composition effect on structural, magnetic, thermal and optical properties of mesoporous MgFe2O4-GO nanocomposites. Ceram Int 44, 4158–4168 (2018)

    Article  Google Scholar 

  13. R. Lamouri, O. Mounkachi, E. Salmani, M. Hamedoun, A. Benyoussef, H. Ez-Zahraouy, Size effect on the magnetic properties of CoFe2O4 nanoparticles: a Monte Carlo study. Ceram Int (2019). https://doi.org/10.1016/j.ceramint.2019.12.035

    Article  Google Scholar 

  14. S. Munjal, N. Khare, B. Sivakumar, D.N. Sakthikumar, Citric acid coated CoFe2O4 nanoparticles transformed through rapid mechanochemical ligand exchange for efficient magnetic hyperthermia applications. J Magn Magn Mater 477, 388–395 (2019)

    Article  ADS  Google Scholar 

  15. D. Hu, F. Zhao, Z. Zhang, L. Miao, R. Ma, W. Zhao et al., Synthesis and magnetic properties of monodisperse CoFe2O4 nanoparticles coated by SiO2. Ceram Int 44, 22462–22466 (2018)

    Article  Google Scholar 

  16. S. Ramesh, D. Ravinder, K.C.B. Naidu, N.S. Kumar, K. Srinivas, D.B. Basha, B.C. Sekhar, A review on giant piezoelectric coefficient, materials and applications. Biointerface Res Appl Chem 9, 4205–4216 (2019)

    Article  Google Scholar 

  17. N. Boda, K.C.B. Naidu, D.B. Basha, D. Ravinder, Structural and magnetic properties of CdCoFe2O4 nanoparticles. J. Supercond. Nov. Magn. 1–6 (2019). https://doi.org/10.1007/s10948-019-05242-1

  18. K.C.B. Naidu, W. Madhuri, Microwave processed NiMg ferrites: studies on structural and magnetic properties. J Magn Magn Mater 420, 109–116 (2016)

    Article  ADS  Google Scholar 

  19. K.C.B. Naidu, W. Madhuri, Ceramic nanoparticle synthesis at lower temperatures for LTCC and MMIC technology. IEEE Trans Magn 54, 2300808 (2018). https://doi.org/10.1109/TMAG.2018.2855663

    Article  Google Scholar 

  20. M. Hashim, K.C.B. Naidu, G.H.R. Joice, J.L. Naik, D. Ravinder, Superparamagnetic and photocatalytic activity of CoCe0.02Dy0.02Fe1.96O4 nanoparticles synthesized by citrate-gel autocombustion technique. Biointerface Res Appl Chem 9, 4164–4167 (2019)

    Article  Google Scholar 

  21. C.H. Vinuthna, K.C.B. Naidu, C.C. Sekhar, D. Ravinder, Magnetic and antimicrobial properties of cobalt zinc ferrite nanoparticles synthesized by citrate-gel method. Int J Appl Ceram Technol 16, 1944 (2019). https://doi.org/10.1111/ijac.13276

    Article  Google Scholar 

  22. S. Joshi, M. Kumar, Effect of Ni2+ substitution on structural, magnetic, dielectric and optical properties of mixed spinel CoFe2O4 nanoparticles. Ceram Int 42, 18154–18165 (2018)

    Article  Google Scholar 

  23. G. Aravind, M. Raghasudha, D. Ravinder, M.M. Raja, S.S. Meena, P. Bhatt, M. Hashim, Study of structural and magnetic properties of Li–Ni nanoferrites synthesized by citrate-gel auto combustion method. Ceram Int 42, 2941–2950 (2016)

    Article  Google Scholar 

  24. M. Hashim, M. Raghasudha, J. Shah, S.E. Shirsath, D. Ravinder, S. Kumar, S.S. Meena, P. Bhatt, R. Kumar, R.K. Kotnala, High temperature dielectric studies of indium-substituted NiCuZn nanoferrites. J Phys Chem Solids 112, 29–36 (2018)

    Article  ADS  Google Scholar 

  25. F.R. Mariosi, J. Venturini, A. da Cas Viegas, C.P. Bergmann, Lanthanum-doped spinel cobalt ferrite (CoFe2O4) nanoparticles for environmental applications. Ceram Int (2019). https://doi.org/10.1016/j.ceramint.2019.09.266

    Article  Google Scholar 

  26. P. Scherrer, Bestimmung der Grosse und der Inneren Struktur von Kolloidteilchen Mittels Rontgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften, Gottingen. Math-Phys Kl 2, 98–100 (1918)

    Google Scholar 

  27. N.S. Kumar, R.P. Suvarna, K.C.B. Naidu, Grain and grain boundary conduction mechanism in sol-gel synthesized and microwave heated Pb0.8-yLayCo0.2TiO3 (y = 0.2 – 0.8) nanofibers. Mater Chem Phys 223, 241–248 (2019)

    Article  Google Scholar 

  28. A.R. Denton, N.W. Ashcroft, Vegard’s law. Phys Rev A 43, 3161 (1991)

    Article  ADS  Google Scholar 

  29. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 32, 751–767 (1976)

    Article  Google Scholar 

  30. N.S. Kumar, R.P. Suvarna, K.C.B. Naidu, G.R. Kumar, S. Ramesh, Structural and functional properties of sol-gel synthesized and microwave heated Pb0.8Co0.2-zLazTiO3 (z = 0.05 – 0.2) nanoparticles. Ceram Int 44, 19408–19420 (2018)

    Article  Google Scholar 

  31. N.S. Kumar, R.P. Suvarna, K.C.B. Naidu, Sol-gel synthesized and microwave heated Pb0.8-yLayCo0.2TiO3 (y = 0.2 – 0.8) nanoparticles: structural, morphological and dielectric properties. Ceram Int 44, 18189–18199 (2018)

    Article  Google Scholar 

  32. D. Kothandan, R.J. Kumar, M. Prakash, K.C.B. Naidu, Structural, morphological and optical properties of Ba1-xCuxTiO3 (x = 0.2, 0.4, 0.6, 0.8) nanoparticles synthesized by hydrothermal method. Mater Chem Phys 215, 310–315 (2018)

    Article  Google Scholar 

  33. R. Chantrell, N.S. Walmsley, J. Gore, M. Maylin, Theoretical studies of the field-cooled and zero-field cooled magnetization of interacting fine particles. J Appl Phys 85, 4340 (1999)

    Article  ADS  Google Scholar 

  34. U. Naresh, R.J. Kumar, K.C.B. Naidu, Hydrothermal synthesis of barium copper ferrite nanoparticles: nanofiber formation, optical, and magnetic properties. Mater Chem Phys 236, 121807 (2019)

    Article  Google Scholar 

  35. L.J. Berchmens, R.K. Selvan, P.N.S. Kumar, C.O. Augustin, Structural and electrical properties of Ni1-xMgxFe2O4 synthesized by citrate gel process. J Magn Magn Mater 279, 103–110 (2004)

    Article  ADS  Google Scholar 

  36. S.R. Shinde, S.D. Kulkarni, A.G. Banpurkar, R. Nawathey-Dixit, S.K. Date, S.B. Ogale, Magnetic properties of nanosized powders of magnetic oxides synthesized by pulsed laser ablation. J Appl Phys 88, 1566 (2000)

    Article  ADS  Google Scholar 

  37. M.A. Gabal, Y.M. AlAngari, H.M. Zaki, Structural, magnetic and electrical characterization of Mg–Ni nanocrystalline ferrites prepared through egg white precursor. J Magn Magn Mater 363, 6–15 (2014)

    Article  ADS  Google Scholar 

  38. E.C. Stoner, E.P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys. Phil Trans R Soc Lond A 240, 599 (1948)

    Article  ADS  Google Scholar 

  39. C.P. Bean, J.D. Livingston, Superparamagnetism. J Appl Phys 30, 120 (1959)

    Article  ADS  Google Scholar 

  40. N. Raghuram, T.S. Rao, K.C.B. Naidu, Magnetic properties of hydrothermally synthesized Ba1-xSrxFe12O19 (x = 0.0 − 0.8) nanomaterials. Appl Phys A 125, 839 (2019)

    Article  ADS  Google Scholar 

  41. U. Naresh, R.J. Kumar, K.C.B. Naidu, Structural, morphological, optical, magnetic and ferroelectric properties of Ba0.2La0.8Fe2O4 nanofibers. Biointerface Res Appl Chem 9, 4243–4247 (2019)

    Article  Google Scholar 

  42. D.R. Mane, D.D. Birajdar, S.E. Shirsath, R.A. Telugu, R.H. Kadam, Structural and magnetic characterizations of Mn-Ni-Zn ferrite nanoparticles. Phys Status Solidi A 207, 2355 (2010)

    Article  ADS  Google Scholar 

  43. S. Singhal, K. Chanda, Cation distribution and magnetic properties in chromium-substituted nickel ferrites prepared using aerosol route. J Solid State Chem 180, 296 (2007)

    Article  ADS  Google Scholar 

  44. C.M. Hurd, Varieties of magnetic order in solids. Contemp Phys 23, 469 (1982)

    Article  ADS  Google Scholar 

  45. D.J. Craik, Magnetic oxides, part II (Wiley, London, 1975), p. 703

    Google Scholar 

Download references

Acknowledgements

The authors (AG and DR) are very grateful to Prof. G. Prasad, Head, Department of Physics, Osmania University, Hyderabad, and also thankful to UPE-UGC-OU and DST-PURSE-OU. Authors K. M. Batoo, S. F. Adil and M. Khan are thankful to the Deanship of Scientific Research at King Saud University for its funding through the Research Group Project no. RG-1437-030.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ravinder.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaffoor, A., Naidu, K.C.B., Ravinder, D. et al. Synthesis of nano-NiXFe2O4 (X = Mg/Co) by citrate-gel method: structural, morphological and low-temperature magnetic properties. Appl. Phys. A 126, 39 (2020). https://doi.org/10.1007/s00339-019-3225-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3225-1

Navigation