Skip to main content
Log in

Analysis of varying Gd3+ concentrations on the structure and optical properties of ZnAl2O4:0.1% Eu3+; x% Gd3+ (0 ≤ x ≤ 1.2) synthesized via citrate sol–gel method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report the preparation of 0.1% Eu3+; x% Gd3+ (0 ≤ x ≤ 1.2) ZnAl2O4 phosphors using the citrate sol–gel method. X-ray diffraction (XRD) data revealed that all annealed samples consisted of the single phase of cubic ZnAl2O4 structure. The scanning electron microscopic (SEM) images indicated pronounced effect of dual doping on the surface morphology of the phosphor. The estimated crystal sizes estimated by the XRD was confirmed by the high-resolution transmission electron microscopy (HR-TEM) to be approximately around 20 nm. The photoluminescence (PL) spectroscopy results revealed four distinct emission peaks located at 393, 400, 578 and 618 nm. The peaks at around 393 and 400 nm were attributed to the defect levels located at different positions on the host material (ZnAl2O4). The emission peak at 578 and 618 nm were attributed to the 5D0 → 7F1 and 2D0 → 7F2 characteristic transition within the Eu3+ ions. The International Commission on Illumination (CIE) colour coordinates revealed that the emission colour was not influenced by varying the concentration of Gd3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Roesky, J. Weiguny, H. Bestgen, U. Dingerdissen, App. Catal. A 176, 213–220 (1999)

    Article  Google Scholar 

  2. M. Zawadzki, Sol. State Sci. 8(1), 14–18 (2006)

    Article  ADS  Google Scholar 

  3. V. Singh, R.P.S. Chakradhar, J.L. Rao, D.K. Kim, J. Lumin. 128(3), 394–402 (2008)

    Article  Google Scholar 

  4. J. Popovic, B. Grzeta, B. Rakvin, E. Tkalcec, M. Vrankic, S. Kuranjica, J. Alloys Comp. 509(34), 8487–8492 (2011)

    Article  Google Scholar 

  5. G. Lakshminarayana, L. Wondraczek, J. Sol. State Chem. 184(8), 1931–1938 (2011)

    Article  ADS  Google Scholar 

  6. W.M. Mulwa, B.F. Dejene, M.O. Onani, C.N.M. Ouma, J. Lumin. 184, 7–16 (2017)

    Article  Google Scholar 

  7. W. Strek, P. Deren, A. Bednarkiewicz, M. Zawadzki, J. Wrzyszcz, J. Alloys Comp. 300–301, 456–458 (2000)

    Article  Google Scholar 

  8. D.A. Zatsepin, D.W. Boukhvalov, A.F. Zatsepin, YuA Kuznetsova, M.A. Mashkovtsev, V.N. Rychkov, V.Y. Shur, A.A. Esin, E.Z. Kurmaeva, App. Sur. Sci. 436, 697–707 (2018)

    Article  ADS  Google Scholar 

  9. R.K. Tamrakar, K. Upadhyay, Optik 143, 125–130 (2017)

    Article  ADS  Google Scholar 

  10. S.V. Motloung, F.B. Dejene, R.E. Kroon, H.C. Swart, O.M. Ntwaeaborwa, Phys B 468–469, 11–20 (2015)

    Article  ADS  Google Scholar 

  11. T. Chengaiah, C.K. Jayasankar, L.R. Moorthy, Phys B 431, 137–141 (2013)

    Article  ADS  Google Scholar 

  12. Q. Hou, F. Meng, J. Sun, Nano. Res. Lett. 8, 144 (2013)

    Article  Google Scholar 

  13. B. Cheng, S. Qu, H. Zhou, Z. Wang, Nanotechnology 17, 2982–2987 (2006)

    Article  ADS  Google Scholar 

  14. C. -Perez, J. Lambert, A. Alatorre-Ordaz, J.A. Gutierrez, T. Lopez-Luke, R. Ramirez-Fuentes, T. Kobayashi, J. Lumin. 184, 123–129 (2017)

    Article  Google Scholar 

  15. A. Nakrela, N. Benramdane, A. Bouzidi, Z. Kebbab, M. Medles, C. Mathieu, Res. Phy. 6, 133–138 (2016)

    Google Scholar 

  16. S.V. Motloung, F.B. Dejene, H.C. Swart, O.M. Ntwaeaborwa, J. Sol-Gel Sci. Technol. 70(3), 422–427 (2014)

    Article  Google Scholar 

  17. V.M. Maphiri, F.B. Dejene, S.V. Motloung, Res. Phy. 7, 3510–3521 (2017)

    Google Scholar 

  18. B.S. Barros, P.S. Melo, R.H.G.A. Kiminami, A.C.F.M. Costa, G.F. de Sá, S. Alves, J. Mater. Sci. 41(15), 4744–4748 (2006)

    Article  ADS  Google Scholar 

  19. H. Dixit, N. Tandon, S. Cottenier, R. Saniz, D. Lamoen, B. Partoens, V. Van Speybroeck, M. Waroquier, New J. Phy. 13, 063002 (2011)

    Article  ADS  Google Scholar 

  20. Q. Wang, S.-Y. Ouyang, W.-H. Zhang, B. Yang, Y.-P. Zhang, H.-P. Xia, Acta Metall. Sin (Engl. Lett.). 28, 487491 (2015)

    Google Scholar 

  21. P. Gupta, A.K. Bedyal, V. Kumar, Y. Khajuria, S.P. Lochab, S.S. Pitale, O.M. Ntwaeaborwa, H.C. Swart, Mat. Res. Bull. 60, 401–411 (2014)

    Article  Google Scholar 

  22. W. Jiao, Z. Zhijun, Z. Jingtai, J. Rare Earths 33(12), 1241–1245 (2015)

    Article  Google Scholar 

  23. M.K. Lau, J. Hao, Energy Procedia 15, 129–134 (2012)

    Article  Google Scholar 

  24. I.A.M. Ibrahim, Z. Lences, P. Sajgalik, L. Benco, J. Lumin. 164, 131–137 (2015)

    Article  Google Scholar 

  25. Y. Shimizu, K. Ueda, J. Lumin. 168, 14–19 (2015)

    Article  Google Scholar 

  26. J.I. Eldridge, J. Lumin. 214, 116535 (2019)

    Article  Google Scholar 

  27. S.V. Motloung, K.G. Tshabalala, R.E. Kroon, T.T. Hlatshwayo, M. Mlambo, S. Mpelane, J. Mol. Struct. 1175, 241–252 (2019)

    Article  ADS  Google Scholar 

  28. hhttps://www.mathworks.com/matlabcentral/fileexchange/29620-cie-coordinate-calculatori 2012.

  29. L.F. Koao, B.F. Dejene, H.C. Swart, S.V. Motloung, T.E. Motaung, Opt. Mater. 60, 294–304 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the South African National Research Foundation (NRF) Thuthuka programme (Fund number: UID99266) and NRF incentive funding for rated researchers (IPRR) (Grant no: 114924). The author would also like to acknowledge Mr. T.M Manamela for the sample synthesis and Dr James Wesley-Smith at Electron Microscopy Unit at Sefako Makgatho Health Science University for the SEM and TEM imaging.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. M. Maphiri or S. V. Motloung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maphiri, V.M., Dwivedi, Y., Koao, L.F. et al. Analysis of varying Gd3+ concentrations on the structure and optical properties of ZnAl2O4:0.1% Eu3+; x% Gd3+ (0 ≤ x ≤ 1.2) synthesized via citrate sol–gel method. Appl. Phys. A 126, 73 (2020). https://doi.org/10.1007/s00339-019-3260-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3260-y

Keywords

Navigation