Skip to main content
Log in

Synthesis of SiC Nanowires via Controllable Anodic Etching Time

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Porous SiC (PSC) was successfully synthesized via UV-assisted pulsed current anodic etching of hexagonal n-type silicon carbide (6H–SiC) substrate using different etching times. The micromorphological and structural characterizations of PSC were reported. Field-emission scanning electron microscopy (FESEM) results established that the etching time can be considered as a significant etching parameter that controls the micromorphology aspects of the porous SiC specimens. Furthermore, the adjustment of etching time can convert SiC pores into nanowire structures. Raman spectroscopy characterization was performed as well, where the shape of the Raman spectra was analyzed, in precise the transverse optical E1 (TO) and the longitudinal optical A1 (LO) peaks, which correlate powerfully with the porous SiC micromorphology. This simplistic synthesis may be considered as a potential and affordable technique to synthesize SiC nanowires for extensive applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.K. Song, H.S. Seo, S.Y. Kwon, J.H. Moon, J.H. Yim, J.H. Lee, H.J. Kim, Heavily nitrogen-doped 4H–SiC homoepitaxial films grown on porous SiC substrates. J. Cryst. Growth 305, 83–87 (2007)

    Article  ADS  Google Scholar 

  2. W. QIXUN, Influence of Silicon Nanostructures on the Growth of GaN on Silicon (2013) PhD thesis submited for National University of Sgnapore

  3. Y. Muramoto, M. Kimura, S. Nouda, Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp. Semicond. Sci. Technol. 29, 084004 (2014)

    Article  ADS  Google Scholar 

  4. M. Bosi, K. Rogdakis, K. Zekentes, in Advancing Silicon Carbide Electronics Technology II: Core Technologies of Silicon Carbide Device Processing, ed. by K. Zekentes, K. Vasilevskiy (Materials Research Forum LLC, Millersville, 2020), pp. 233–280

  5. P. Xu, C. Xie, H. Pan, F. Xu, Theoretical studies on band structure and optical properties of 3C–SiC by FPLAPW. JESRP 144, 593–596 (2005)

    Google Scholar 

  6. S. Golmohammadi, A. Ahmadivand, N. Pala, Fano resonances in nanoshell clusters deposited on a multilayer substrate of β-SiC/SiO 2/Si to design high-quality plasmonic sensors. J. Lightwave Technol. 33, 2817–2823 (2015)

    Article  ADS  Google Scholar 

  7. M.T. Schlecht, S. Preu, S. Malzer, H.B. Weber, An efficient Terahertz rectifier on the graphene/SiC materials platform. Sci. Rep. 9, 1–8 (2019)

    Article  ADS  Google Scholar 

  8. S. Kamiyama, M. Iwaya, T. Takeuchi, I. Akasaki, M. Syväjärvi, R. Yakimova, Fluorescent SiC and its application to white light-emitting diodes. J. Semicond 32, 013004 (2011)

    Article  ADS  Google Scholar 

  9. P. Tanner, A. Iacopi, H.-P. Phan, S. Dimitrijev, L. Hold, K. Chaik, G. Walker, D.V. Dao, N.-T. Nguyen, Excellent rectifying properties of the n-3C-SiC/p-Si heterojunction subjected to high temperature annealing for electronics, MEMS, and LED applications. Sci. Rep. 7, 1–11 (2017)

    Article  Google Scholar 

  10. A. Sanger, P.K. Jain, Y.K. Mishra, R. Chandra, Palladium decorated silicon carbide nanocauliflowers for hydrogen gas sensing application. Sens Actuators B Chem 242, 694–699 (2017)

    Article  Google Scholar 

  11. T. Wang, D. Huang, Z. Yang, S. Xu, G. He, X. Li, N. Hu, G. Yin, D. He, L. Zhang, A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett 8, 95–119 (2016)

    Article  Google Scholar 

  12. M. Fukushima, Y. Zhou, Y.-I. Yoshizawa, Fabrication and microstructural characterization of porous silicon carbide with nano-sized powders. Mater. Sci. Eng. B 148, 211–214 (2008)

    Article  Google Scholar 

  13. N. Naderi, M. Hashim, K. Saron, J. Rouhi, Enhanced optical performance of electrochemically etched porous silicon carbide. Semicond. Sci. Technol. 28, 025011 (2013)

    Article  ADS  Google Scholar 

  14. R. Khanna, K. Bevlin, D. Geerpuram, J. Yang, F. Ren, S. Pearton, Dry etching of Ga2O3, in Gallium Oxide (Elsevier, Amsterdam, 2019) pp. 263–285

  15. Y. Sun, C. Yang, Z. Yin, F. Qin, D. Wang, Plasma passivation of near-interface oxide traps and voltage stability in SiC MOS capacitors. J. Appl. Phys. 125, 185703 (2019)

    Article  ADS  Google Scholar 

  16. M.T. Kim, Kinetics of etching in inductively coupled plasmas. ApSS 228, 245–256 (2004)

    ADS  Google Scholar 

  17. D.R. Boris, T.B. Petrova, G.M. Petrov, S.G. Walton, Atomic fluorine densities in electron beam generated plasmas: a high ion to radical ratio source for etching with atomic level precision. J. Vac. Sci. Technol. A Vac. Surf. Films 35, 01A104 (2017)

    Article  Google Scholar 

  18. D. Zhuang, J. Edgar, Wet etching of GaN, AlN, and SiC: a review. Mater. Sci. Eng. R Rep. 48, 1–46 (2005)

    Article  Google Scholar 

  19. Y. Liu, W. Lin, Z. Lin, Y. Xiu, C. Wong, A combined etching process toward robust superhydrophobic SiC surfaces. Nanotechnology 23, 255703 (2012)

    Article  ADS  Google Scholar 

  20. G. Károlyházy, D. Beke, D. Zalka, S. Lenk, O. Krafcsik, K. Kamarás, Á. Gali, Novel method for electroless etching of 6H–SiC. Nanomaterials 10, 538 (2020)

    Article  Google Scholar 

  21. J.S. Shor, I. Grimberg, B.Z. Weiss, A.D. Kurtz, Direct observation of porous SiC formed by anodization in HF. Appl. Phys. Lett. 62, 2836–2838 (1993)

    Article  ADS  Google Scholar 

  22. N. Naderi, M. Hashim, Visible-blind ultraviolet photodetectors on porous silicon carbide substrates. Mater. Res. Bull. 48, 2406–2408 (2013)

    Article  Google Scholar 

  23. D. Van Dorp, J. Sattler, J. den Otter, J. Kelly, Electrochemistry of anodic etching of 4H and 6H–SiC in fluoride solution of pH 3. Electrochim. Acta 54, 6269–6275 (2009)

    Article  Google Scholar 

  24. J.-H. Tan, Z.-Z. Chen, W.-Y. Lu, Y. Cheng, H. He, Y.-H. Liu, Y.-J. Sun, G.-J. Zhao, Fabrication of uniform 4H–SiC mesopores by pulsed electrochemical etching. Nanoscale Res. Lett. 9, 570 (2014)

    Article  ADS  Google Scholar 

  25. Y. Kim, M.-J. Kim, Y.-S. Kim, H. Lee, S.-M. Lee, Nanostructured radiation emitters: design rules for high-performance thermophotovoltaic systems. ACS Photonics 6, 2260–2267 (2019)

    Article  Google Scholar 

  26. C. Chen, S. Chen, M. Shang, F. Gao, Z. Yang, Q. Liu, Z. He, W. Yang, Fabrication of highly oriented 4H–SiC gourd-shaped nanowire arrays and their field emission properties. J. Mater. Chem. C 4, 5195–5201 (2016)

    Article  Google Scholar 

  27. Y. Chen, C. Zhang, L. Li, S. Zhou, X. Chen, J. Gao, N. Zhao, C.P. Wong, Hybrid anodic and metal-assisted chemical etching method enabling fabrication of silicon carbide nanowires. Small 15, 1803898 (2019)

    Article  Google Scholar 

  28. O. Isabella, J. Krč, M. Zeman, Modulated surface textures for enhanced light trapping in thin-film silicon solar cells. Appl. Phys. Lett. 97, 101106 (2010)

    Article  ADS  Google Scholar 

  29. T. Torchynska, A.D. Cano, S.J. Sandoval, M. Dybic, S. Ostapenko, M. Mynbaeva, Photoluminescence and Raman spectroscopy in porous SiC. Microelectron. J. 36, 536–538 (2005)

    Article  Google Scholar 

  30. Y.-J. Lee, The second order Raman spectroscopy in carbon crystallinity. J. Nucl. Mater. 325, 174–179 (2004)

    Article  ADS  Google Scholar 

  31. M. Bauer, A.M. Gigler, A.J. Huber, R. Hillenbrand, R.W. Stark, Temperature-depending Raman line-shift of silicon carbide. JRSp 40, 1867–1874 (2009)

    ADS  Google Scholar 

  32. P. Newby, J.M. Bluet, V. Aimez, L.G. Fréchette, V. Lysenko, Structural properties of porous 6H silicon carbide. Phys. Status Solidi C 8, 1950–1953 (2011)

    Article  ADS  Google Scholar 

  33. T.A. Otitoju, P.U. Okoye, G. Chen, Y. Li, M.O. Okoye, S. Li, Advanced ceramic components: materials, fabrication, and applications. J. Ind. Eng. Chem. 85, 34–65 (2020)

    Article  Google Scholar 

  34. A.J. Nozik, R. Memming, Physical chemistry of semiconductor−liquid interfaces. J. Phys. Chem. 100, 13061–13078 (1996)

    Article  Google Scholar 

  35. M. Leitgeb, C. Zellner, M. Schneider, U. Schmid, A combination of metal assisted photochemical and photoelectrochemical etching for tailored porosification of 4H SiC substrates. ECS J. Solid State Sci. Technol. 5, P556 (2016)

    Article  Google Scholar 

  36. O. Ryong-Sok, M. Takamura, K. Furukawa, M. Nagase, H. Hibino, Effects of UV light intensity on electrochemical wet etching of SiC for the fabrication of suspended graphene. Jpn. J. Appl. Phys. 54, 036502 (2015)

    Article  ADS  Google Scholar 

  37. T. Chen, A. Pan, C. Li, J. Si, X. Hou, Study on morphology of high-aspect-ratio grooves fabricated by using femtosecond laser irradiation and wet etching. ApSS 325, 145–150 (2015)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the School of Physics, Universiti Sains Malaysia, under Grant No. 1001/CINOR/811239. The author Dr. Khaled M. Chahrour expresses gratitude to Universiti Sains Malaysia (USM) for awarding the Post-Doctoral Fellowship position in School of Physics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khaled M. Chahrour or M. R. Hashim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chahrour, K.M., Hashim, M.R. Synthesis of SiC Nanowires via Controllable Anodic Etching Time. Appl. Phys. A 126, 539 (2020). https://doi.org/10.1007/s00339-020-03677-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03677-1

Keywords

Navigation