Skip to main content

Advertisement

Log in

Investigation of magnetic and dielectric properties of Agx-substituted Co0.05−x Zn0.95O dilute magnetic semiconductor prepared by co-precipitation method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A series of Agx-substituted Co0.05−x Zn0.95O (x = 0.00–0.05) nanoparticles calcined at 700 °C have been synthesized using a simple co-precipitation technique. The prepared nanoparticles have been analyzed for their structural, optical, magnetic, and dielectric properties using X-ray diffractometer, Fourier infrared spectroscopy, UV–visible spectroscopy, vibrating sample magnetometer, and inductor capacitor and resistor meter, respectively. The XRD results verify the formation of pure hexagonal wurtzite structure. FTIR spectra show a band at 439 cm−1 that is the characteristic stretching band of Zn–O which also confirms the formation of hexagonal structure. The band-gap energy decreases as the concentration of Ag increases except for samples with concentration x = 0.01 and x = 0.03. VSM results reveal that nanoparticles exhibit ferromagnetism at room temperature. The dielectric constant and tangent loss decreases with increasing frequency. However, the a.c. conductivity increases with increasing frequency. The prepared nanoparticles can be used in a variety of applications such as optoelectronic, memory, and microelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. G. Peleckis, Studies on diluted oxide magnetic semiconductors for spin electronic applications. (2006)

  2. D. Segets, J. Gradl, R.K. Taylor, V. Vassilev, W. Peukert, Analysis of optical absorbance spectra for the determination of ZnO nanoparticle size distribution, solubility, and surface energy. ACS Nano 3(7), 1703–1710 (2009)

    Google Scholar 

  3. X. Lou, H.S. Shen, Y.S. Shen, Development of ZnO series ceramic semiconductor gas sensors. J. Sens. Trans. Technol. 3(1), 1–5 (1991)

    Google Scholar 

  4. E. Bacaksiz, M. Parlak, M. Tomakin, A. Özçelik, M. Karakız, M. Altunbaş, The effects of zinc nitrate, zinc acetate and zinc chloride precursors on investigation of structural and optical properties of ZnO thin films. J. Alloy. Compd. 466(1–2), 447–450 (2008)

    Google Scholar 

  5. J. Wang, J. Cao, B. Fang, P. Lu, S. Deng, H. Wang, Synthesis and characterization of multipod, flower-like, and shuttle-like ZnO frameworks in ionic liquids. Mater. Lett. 59(11), 1405–1408 (2005)

    Google Scholar 

  6. A. Kołodziejczak-Radzimska, T. Jesionowski, Zinc oxide—from synthesis to application: a review. Materials 7(4), 2833–2881 (2014)

    ADS  Google Scholar 

  7. N. Zheng, Introduction to Dilute Magnetic Semiconductors (Department of Physics and Astronomy, The University of Tennessee, Knoxville, 2008)

    Google Scholar 

  8. B. Pandey, S. Ghosh, P. Srivastava, D.K. Avasthi, D. Kabiraj, J.C. Pivin, Synthesis and characterization of Ni-doped ZnO: a transparent magnetic semiconductor. J. Magn. Magn. Mater. 320(24), 3347–3351 (2008)

    ADS  Google Scholar 

  9. G. Murtazaa, R. Ahmad, M.S. Rashid, M. Hassan, A. Hussnain, M. AzharKhan, M. Ehsan ul Haq, M.A. Shafique, S. Riaz, Structural and magnetic studies on Zr doped ZnO diluted magnetic semiconductor. Curr. Appl. Phys. 14(2), 176–181 (2014)

    ADS  Google Scholar 

  10. Y. Liu, J. Yang, Q. Guan, L. Yang, Y. Zhang, Y. Wang, B. Feng, J. Cao, X. Liu, Y. Yang, M. Wei, Effects of Cr-doping on the optical and magnetic properties in ZnO nanoparticles prepared by sol–gel method. J. Alloy. Compd. 486(1–2), 835–838 (2009)

    Google Scholar 

  11. R. Chandramohan, J. Thirumalai, T.A. Vijayan, S. Valanarasu, S.E. Vizhian, M. Srikanth, V. Swaminathan, Nanocrystalline Mg doped ZnO dilute magnetic semiconductor prepared by chemical route. Adv. Sci. Lett. 3(3), 319–322 (2010)

    Google Scholar 

  12. S. Ramachandran, A. Tiwari, J. Narayan, Zn 0.9 Co 0.1 O-based diluted magnetic semiconducting thin films. Appl. Phys. Lett. 84(25), 5255–5257 (2004)

    ADS  Google Scholar 

  13. P.K. Biswas, S. Dey, Effects and applications of silver nanoparticles in different fields. Int. J. Recent Sci. Res. 6(8), 5880–5883 (2015)

    Google Scholar 

  14. X.F. Zhang, Z.G. Liu, W. Shen, S. Gurunathan, Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 17(9), 1534 (2016)

    Google Scholar 

  15. A.C. Burdușel, O. Gherasim, A. Grumezescu, L. Mogoantă, A. Ficai, E. Andronescu, Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomaterials 8(9), 681 (2018)

    Google Scholar 

  16. O. Pourret, M.P. Faucon, Cobalt, Encyclopedia of Geochemistry: A Comprehensive Reference Source on the Chemistry of the Earth (Springer International Publishing, Berlin, 2016), pp. 1–3

    Google Scholar 

  17. S.M. Ansari, R. Bhor, K. Pai, D. Sen, S. Mazumder, K. Ghosh, Y. D. Kolekar, C.V. Ramana, Cobalt nanoparticles for biomedical applications: facile synthesis, physiochemical characterization, cytotoxicity behavior and biocompatibility. Appl. Surf. Sci. 414(31), 171–181 (2017)

    ADS  Google Scholar 

  18. S. Fabbiyola, L.J. Kennedy, U. Aruldoss, M. Bououdina, A.A. Dakhel, J. JudithVijaya, Synthesis of Co-doped ZnO nanoparticles via co-precipitation: Structural, optical and magnetic properties. Powder Technol. 286, 757–765 (2015)

    Google Scholar 

  19. B.R. Kumar, B. Hymavathi, T.S. Rao, Effect of the ceria dopant on the structural and dielectric properties of ZnO semiconductors. J. Sci. Adv. Mater. Devices 3(4), 433–439 (2018)

    Google Scholar 

  20. I. Ahmad, E. Ahmed, M. Ullah, A. Rana, M.F. Manzoor, M.A. Rasheed, A.S. Malik, N.R. Khalid, M. Ahmad, U. Mehtab, Synthesis and characterization of silver doped ZnO nanoparticles for hydrogen production. J. Ovonic Res. 14, 415–427 (2018)

    Google Scholar 

  21. S. Senthilkumaar, K. Rajendran, S. Banerjee, T.K. Chini, V. Sengodan, Influence of Mn doping on the microstructure and optical property of ZnO. Mater. Sci. Semicond. Process. 11(1), 6–12 (2008)

    Google Scholar 

  22. Y.M. Kim, M. Yoon, I.W. Park, Y.J. Park, J.H. Lyou, Synthesis and magnetic properties of Zn1−xMnxO films prepared by the sol–gel method. Solid State Commun. 129(3), 175–178 (2004)

    ADS  Google Scholar 

  23. C. Jayachandraiah, G. Krishnaiah, Influence of cerium dopant on magnetic and dielectric properties of ZnO nanoparticles. J. Mater. Sci. 52(12), 7058–7066 (2017)

    ADS  Google Scholar 

  24. M.K. Seery, R. George, P. Floris, S.C. Pillai, Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J. Photochem. Photobiol. A 189(2–3), 258–263 (2007)

    Google Scholar 

  25. R. Wang, J.H. Xin, Y. Yang, H. Liu, L. Xu, J. Hu, The characteristics and photocatalytic activities of silver doped ZnO nanocrystallites. Appl. Surf. Sci. 227(1–4), 312–317 (2004)

    ADS  Google Scholar 

  26. A.H. Shah, E. Manikandan, M.B. Ahmed, M. Irdosh, Nano Ag-doped ZnO particles magnetic, optical and structural studies. In: AIP Conference Proceedings, vol. 1512, no. 1, pp. 430–431. AIP (2013)

  27. Ö.A. Yıldırım, H.E. Unalan, C. Durucan, Highly efficient room temperature synthesis of silver-doped zinc oxide (ZnO: Ag) nanoparticles: structural, optical, and photocatalytic properties. J. Am. Ceram. Soc. 96(3), 766–773 (2013)

    Google Scholar 

  28. R. Chauhan, A. Kumar, R.P. Chaudhary, Photocatalytic studies of silver doped ZnO nanoparticles synthesized by chemical precipitation method. J. Sol Gel. Sci. Technol. 63(3), 546–553 (2012)

    Google Scholar 

  29. S. Reddy, V. Reddy, K. Reddy, P. Kumari, Synthesis, structural, optical properties and antibacterial activity of co-doped (Ag, Co) ZnO nanoparticles. Res. J. Mater. Sci. 1(1), 11–20 (2013)

    Google Scholar 

  30. M. Buşilă, V. Muşat, T. Textor, B. Mahltig, Synthesis and characterization of antimicrobial textile finishing based on Ag: ZnO nanoparticles/chitosan biocomposites. Rsc Adv. 5(28), 21562–21571 (2015)

    Google Scholar 

  31. K. Sadaiyandi, A. Kennedy, S. Sagadevan, Z.Z. Chowdhury, M.R.B. Johan, F.A. Aziz, R.T. Selvi, Influence of Mg doping on ZnO nanoparticles for enhanced photocatalytic evaluation and antibacterial analysis. Nanoscale Res. Lett. 13(1), 229 (2018)

    ADS  Google Scholar 

  32. I. Ahmad, E. Ahmed, M. Ullah, A. Rana, M.F. Manzoor, M.A. Rasheed, A.S. Malik, N.R. Khalid, M. Ahmad, U. Mehtab, Synthesis and characterization of silver doped zno nanoparticles for hydrogen production. J. Ovonic Res. 14, 415–427 (2018)

    Google Scholar 

  33. R. Ashraf, S. Riaz, Z.N. Kayani, S. Naseem, Structural and magnetic properties of iron doped ZnO nanoparticles. Mater. Today Proc. 2(10), 5384–5389 (2015)

    Google Scholar 

  34. A.H. Marui, H. Kamblei, A. Kalarikkali, R. Shahi, P.B. Bhanuse, N. Pradhani, Mg doped ZnO dilute magnetic oxides prepared by chemical method. Int. J. Chem. Phys. Sci., Special Issue ICPMCSC 5(8) (2015)

  35. L.S. Rao, T.V. Rao, S. Naheed, P.V. Rao, Structural and optical properties of zinc magnesium oxide nanoparticles synthesized by chemical co-precipitation. Mater. Chem. Phys. 203, 133–140 (2018)

    Google Scholar 

  36. U.P. Gawai, H.A. Khawal, M.R. Bodke, B.N. Dole, Effect of silver doping on ZnO nanocrystals. in AIP Conference Proceedings, vol. 1728, no. 1, p. 020607. AIP Publishing (2016)

  37. Y. Liu, Y. Yang, J. Yang, Q. Guan, H. Liu, L. Yang, Y. Zhang, Y. Wang, M. Wei, X. Liu, L. Fei, X. Cheng, Intrinsic ferromagnetic properties in Cr-doped ZnO diluted magnetic semiconductors. J. Solid State Chem. 184(5), 1273–1278 (2011)

    ADS  Google Scholar 

  38. S. Tewari, A. Ghosh, A. Bhattacharjee, Studies on frequency dependent electrical and dielectric properties of sintered zinc oxide pellets: effects of Al-doping. Indian J. Phys. 90(11), 1247–1255 (2016)

    ADS  Google Scholar 

  39. G. Vijayaprasath, R. Murugan, T. Mahalingam, G. Ravi, Comparative study of structural and magnetic properties of transition metal (Co, Ni) doped ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 26(9), 7205–7213 (2015)

    Google Scholar 

  40. S. Kumar, S. Mukherjee, R.K. Singh, S. Chatterjee, A.K. Ghosh, Structural and optical properties of sol–gel derived nanocrystalline Fe-doped ZnO. J. Appl. Phys. 110(10), 103508 (2011)

    ADS  Google Scholar 

  41. T. Srinivasulu, K. Saritha, K.R. Reddy, Synthesis and characterization of Fe-doped ZnO thin films deposited by chemical spray pyrolysis. Mod. Electron. Mater. 3(2), 76–85 (2017)

    Google Scholar 

  42. U. Godavarti, V.D. Mote, M. Dasari, Role of cobalt doping on the electrical conductivity of ZnO nanoparticles. J. Asian Ceram. Soc. 5(4), 391–396 (2017)

    Google Scholar 

  43. A.A. Azab, S.A. Esmail, M.K. Abdelamksoud, Studying the effect of cobalt doping on optical and magnetic properties of zinc oxide nanoparticles. Silicon 11(1), 165–174 (2019)

    Google Scholar 

  44. G. Umapathy, G. Senguttuvan, L.J. Berchmans, V. Sivakumar, P. Jegatheesan, Influence of cerium substitution on structural, magnetic and dielectric properties of nanocrystalline Ni–Zn ferrites synthesized by combustion method. J. Mater. Sci. Mater. Electron. 28(23), 17505–17515 (2017)

    Google Scholar 

  45. P. Sathish, K. Ravichandran, B. Sakthivel, B. Muralidharan, A. Panneerselvam, Effect of Ag+ Co doping on the antibacterial properties of ZnO nanopowders synthesized using combustion method. J. Mater. Sci. Mater. Electron. 27(7), 7024–7032 (2016)

    Google Scholar 

  46. A. Mesaros, C.D. Ghitulica, M. Popa, R. Mereu, T. Petrisor, M. Gabor, A.I. Cadis, B.S. Vasile, Synthesis, structural and morphological characteristics, magnetic and optical properties of Co doped ZnO nanoparticles. Ceram. Int. 40(2), 2835–2846 (2014)

    Google Scholar 

  47. F. Khan, S.H. Baek, J.H. Kim, Enhanced charge transport properties of Ag and Al co-doped ZnO nanostructures via solution process. J. Alloy. Compd. 682, 232–237 (2016)

    Google Scholar 

  48. S.S. Alias, A.B. Ismail, A.A. Mohamad, Effect of pH on ZnO nanoparticle properties synthesized by sol–gel centrifugation. J. Alloy. Compd. 499(2), 231–237 (2010)

    Google Scholar 

  49. A. Srithar, J.C. Kannan, T.S. Senthil, Preparation and ization of Ag doped ZnO nanoparticles and its antibacterial applications. J. Adv. Chem. 13(6), 6273–6279 (2017)

    Google Scholar 

  50. T. Siva Vijayakumar, S. Karthikeyeni, S. Vasanth, A. Ganesh, G. Bupesh, R. Ramesh, P. Subramanian et al., Synthesis of silver-doped zinc oxide nanocomposite by pulse mode ultrasonication and its characterization studies. J. Nanosci. 2013, 1 (2013)

    Google Scholar 

  51. S. Gayathri, O.S.N. Ghosh, S. Sathishkumar, P. Sudhakara, J. Jayaramudu, S.S. Ray, A. Kasi Viswanath, Investigation of physicochemical properties of Ag doped ZnO nanoparticles prepared by chemical route. Appl. Sci. Lett. 1(1), 8–13 (2015)

    Google Scholar 

  52. M. Fox, Optical Properties of Solids, Second edn. (Oxford University Press Inc., New York, 2010)

  53. L. Mustafa, S. Anjum, S. Waseem, S. Javed, S.M. Ramay, S. Atiq, Effect of Co and Ni codoping on the structural, magnetic, electrical and optical properties of ZnO. Mater. Res. Bull. 84, 32–38 (2016)

    Google Scholar 

  54. C. Abinaya, M. Marikkannan, M. Manikandan, J. Mayandi, P. Suresh, V. Shanmugaiah, C. Ekstrum, J. Pearce, Structural and optical characterization and efficacy of hydrothermal synthesized Cu and Ag doped zinc oxide nanoplate bactericides. Mater. Chem. Phys. 184, 172–182 (2016)

    Google Scholar 

  55. M. Elango, K. Gopalakrishnan, S. Vairam, M. Thamilselvan, Structural, optical and magnetic studies on non-aqueous synthesized CdS: Mn nanomaterials. J. Alloy. Compd. 538, 48–55 (2012)

    Google Scholar 

  56. A. Ghosh, N. Kumari, S. Tewari, A. Bhattacharjee, Structural and optical properties of pure and Al doped ZnO nanocrystals. Indian J. Phys. 87(11), 1099–1104 (2013)

    ADS  Google Scholar 

  57. K.S. Ahmad, S.B. Jaffri, Phytosynthetic Ag doped ZnO nanoparticles: semiconducting green remediators. Open Chem. 16(1), 556–570 (2018)

    Google Scholar 

  58. S.M. Hosseini, I.A. Sarsari, P. Kameli, H. Salamati, Effect of Ag doping on structural, optical, and photocatalytic properties of ZnO nanoparticles. J. Alloy. Compd. 640, 408–415 (2015)

    Google Scholar 

  59. R. Elilarassi, G. Chandrasekaran, Synthesis, structural and magnetic characterization of Ni-doped ZnO diluted magnetic semiconductor. Am. J. Mater. Sci. 2(1), 46–50 (2012)

    Google Scholar 

  60. S. Yılmaz, M. Parlak, Ş. Özcan, M. Altunbaş, E. McGlynn, E. Bacaksız, Structural, optical and magnetic properties of Cr doped ZnO microrods prepared by spray pyrolysis method. Appl. Surf. Sci. 257(22), 9293–9298 (2011)

    ADS  Google Scholar 

  61. N. Sharma, R. Kant, V. Sharma, S. Kumar, Influence of silver dopant on morphological, dielectric and magnetic properties of ZnO nanoparticles. J. Electron. Mater. 47(7), 4098–4107 (2018)

    ADS  Google Scholar 

  62. J. Iqbal, R.A. Janjua, T. Jan, Structural, optical and magnetic properties of Co-doped ZnO nanoparticles prepared via a wet chemical route. Int. J. Mod. Phys. B 28(25), 1450158 (2014)

    ADS  Google Scholar 

  63. M. Bouloudenine, N. Viart, S. Colis, A. Dinia, Bulk Zn1xCoxO magnetic semiconductors prepared by hydrothermal technique. Chem. Phys. Lett. 397(1–3), 73–76 (2004)

    ADS  Google Scholar 

  64. M. Saleem, S.A. Siddiqi, S. Atiq, M.S. Anwar, S. Riaz, Room temperature magnetic behavior of sol–gel synthesized Mn doped ZnO. Chin. J. Chem. Phys. 23(4), 469 (2010)

    Google Scholar 

  65. L. Jäppinen, T. Higuchi, H. Huhtinen, P. Paturi, J. Salonen, Increasing coercivity of ferromagnetic zinc oxide with thermal acetylene treatment. in 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO), pp. 1–4. IEEE (2018)

  66. S. Anjum, H. Nazli, R. Khurram, T. Zeeshan, S. Riaz, A. Usman, Role of Zn substitution on structural, magnetic and dielectric properties of Cu–Cr spinel ferrites. Indian J. Phys. 90(8), 869–880 (2016)

    ADS  Google Scholar 

  67. J. Maxwell, A.O.O.C. WORSHIP, Oxford Univ. Press, vol. 1, p. 328 (1873)

  68. K.W. Wagner, Dielectric after-effect. Ann. Phys. 40, 817 (1913)

    Google Scholar 

  69. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83(1), 121 (1951)

    ADS  Google Scholar 

  70. M.M. Hassan, A.S. Ahmed, M. Chaman, W. Khan, A.H. Naqvi, A. Azam, Structural and frequency dependent dielectric properties of Fe3+ doped ZnO nanoparticles. Mater. Res. Bull. 47(12), 3952–3958 (2012)

    Google Scholar 

  71. Y. Cherifi, A. Chaouchi, Y. Lorgoilloux, M. Rguiti, A. Kadri, C. Courtois, Electrical, dielectric and photocatalytic properties of Fe-doped ZnO nanomaterials synthesized by sol gel method. Process. Appl. Ceram. 10(3), 125–135 (2016)

    Google Scholar 

  72. S. Sharma, K. Nanda, R.S. Kundu, R. Punia, N. Kishore, Structural properties, conductivity, dielectric studies and modulus formulation of Ni modified ZnO nanoparticles. J. Atomic Mol. Condens. Nano Phys. 2(1), 15–31 (2015)

    Google Scholar 

  73. R. Zamiri, B.K. Singh, D. Dutta, A. Reblo, J.M.F. Ferreira, Electrical properties of Ag-doped ZnO nano-plates synthesized via wet chemical precipitation method. Ceram. Int. 40(3), 4471–4477 (2014)

    Google Scholar 

  74. S. Mahendia, A.K. Tomar, S. Kumar, Electrical conductivity and dielectric spectroscopic studies of PVA–Ag nanocomposite films. J. Alloy. Compd. 508(2), 406–411 (2010)

    Google Scholar 

  75. S. Sagadevan, K. Pal, Z.Z. Chowdhury, M.E. Hoque, Structural, dielectric and optical investigation of chemically synthesized Ag-doped ZnO nanoparticles composites. J. Sol Gel. Sci. Technol. 83(2), 394–404 (2017)

    Google Scholar 

  76. S. Nasreen, G.M. Treich, M.L. Baczkowski, A.K. Mannodi‐Kanakkithodi, Y. Cao, R. Ramprasad, G. Sotzing, Polymer dielectrics for capacitor application. Kirk-Othmer Encycl. Chem. Technol. https://doi.org/10.1002/0471238961.koe00036 (2007)

  77. M. Azim, S. Atiq, S. Naseem, Structural and electrical characterization of lanthanum doped strontium hexaferrites. Sci. Int. Lahore 24(4), 341–345 (2012)

    Google Scholar 

  78. M.L. Dinesha, G.D. Prasanna, C.S. Naveen, H.S. Jayanna, Structural and dielectric properties of Fe doped ZnO nanoparticles. Indian J. Phys. 87(2), 147–153 (2013)

    ADS  Google Scholar 

  79. S. Sagadevan, I. Das, P. Singh, J. Podder, Synthesis of tungsten carbide nanoparticles by hydrothermal method and its Characterization. J. Mater. Sci. Mater. Electron. 28(1), 1136–1141 (2017)

    Google Scholar 

  80. S. Anjum, M. Nisa, A. Sabah, M.S. Rafique, R. Zia, Comprehensive analysis of structure and temperature, frequency and concentration-dependent dielectric properties of lithium-substituted cobalt ferrites (Lix Co1–x Fe2O4). Appl. Phys. A 123(8), 554 (2017)

    ADS  Google Scholar 

  81. I. Ahmad, M.E. Mazhar, M.N. Usmani, K. Khan, S. Ahmad, J. Ahmad, Impact of silver dopant on electrical and dielectric properties of ZnO nanoparticles. Mater. Res. Express 6(3), 035014 (2018)

    ADS  Google Scholar 

  82. T. Iqbal, S. Ghazal, S. Atiq, N.R. Khalid, A. Majid, S. Afsheen, N.A. Niaz, Influence of manganese on structural, dielectric and magnetic properties of Zno nanoparticles. Dig. J. Nanomater. Biostruct. 11(3), 899–908 (2016)

    Google Scholar 

  83. K. Praveenkumar, T. Sankarappa, J.S. Ashwajeet, R. Ramanna, Dielectric and AC conductivity studies in PPy-Ag nanocomposites. J. Polym. 2015 (2015)

Download references

Acknowledgements

I am highly thankful to Dr. Shahid Atiq, Associate Professor, Centre for Solid State Physics, University of the Punjab, Lahore, Pakistan for his co-operation in doing dielectric measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safia Anjum.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anjum, S., Anjum, M. & Mustafa, Z. Investigation of magnetic and dielectric properties of Agx-substituted Co0.05−x Zn0.95O dilute magnetic semiconductor prepared by co-precipitation method. Appl. Phys. A 126, 753 (2020). https://doi.org/10.1007/s00339-020-03892-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03892-w

Keywords

Navigation