Skip to main content
Log in

Effect of in-situ growth and separate addition method in hydrothermal process on the structural and magnetic properties of CoNiFe2O4@functionalized CNTs nanocomposite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Multi-walled carbon nanotubes (MWCNT) were synthesized by the chemical vapor deposition method and functionalized successfully through a two-step procedure, namely sonication and acid reflux. Functionalized multi-wall carbon nanotubes (FMWCNT) were decorated with crystalline nickel-substituted cobalt ferrite nanoparticles (CNF) by the two different routes of hydrothermal method to form CNF@FMWCNT nanocomposite. The nanocomposites with different weight ratios of CNF and FMWCNT were characterized by X-ray diffraction analysis (XRD), Transmission electron microscopy (TEM), Raman spectroscopy, Fourier-transform infrared spectra analyzer (FTIR), thermogravimetric analyzer (TGA), and physical property measurement system. The XRD patterns revealed the formation of the cubic phase spinel structure of CNF with the optimized 1:1 weight ratio composite with a crystallite size of 11.55 nm, accordingly the Williamson–Hall (W–H) analysis. TEM confirmed the functionalization of FMWCNT, crystallinity of CNF and better adhesion between ferrite and FMWCNT in FCI11 composite than FCS11. FTIR study confirmed the presence of functional groups in as-synthesized samples. The study of the Raman spectra provided useful information about the quality of MWCNT and its degree of functionalization, and the quality of nanocomposites. TGA study revealed that different nanocomposites were found to have dissimilar thermal stability depending on the different synthesis routes. The magnetic study showed CNF@FMWCNT nanocomposite of 1:1 weight percent composition, produced by in-situ growth method, obtained significant magnetization features among all the samples. Nanocomposites prepared by the in-situ growth method show improved characteristics than the separate addition technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Maensiri, C. Masingboon, B. Boonchom, S. Seraphin, Scripta Mater. 56, 797 (2007)

    Google Scholar 

  2. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd edn. (John Wiley & Sons, Inc., Hoboken, 2008)

    Google Scholar 

  3. A.F. Junior, V. Zapf, P. Egan, J. Appl. Phys. 101, 09M506 (2007)

    Google Scholar 

  4. M. Grigorova, H.J. Blythe, V. Blaskov, V. Rusanov, V. Petkov, V. Masheva, D. Nihtianova, L.M. Martinez, J.S. Muñoz, M. Mikhov, J. Magnet. Magnet. Mater. 183, 163 (1998)

    ADS  Google Scholar 

  5. C.G. Ramankutty, S. Sugunan, Appl. Catal. A 218, 39 (2001)

    Google Scholar 

  6. R.D.K. Misra, A. Kale, R.S. Srivastava, O.N. Senkov, Mater. Sci. Technol. 19, 826 (2003)

    Google Scholar 

  7. C.V. Gopal Reddy, S.V. Manorama, V.J. Rao, J. Mater. Sci. Lett. 19, 774 (2000)

    Google Scholar 

  8. P. Singh, D. Rathore, in AIP Conference Proceedings, American Institute of Physics Inc., (2016), 020259

  9. G.P. Ratkovski, K.T.O. do Nascimento, G.C. Pedro, D.R. Ratkovski, F.D.S. Gorza, R.J. da Silva, B.G. Maciel, L.C. Mojica-Sánchez, C.P. de Melo, Langmuir 36, 2920 (2020)

    Google Scholar 

  10. X. Sui, M. Scherge, M.H. Kryder, J.E. Snyder, V.G. Harris, N.C. Koon, J. Magn. Magn. Mater. 155, 132 (1996)

    ADS  Google Scholar 

  11. M.D. Shultz, S. Calvin, P.P. Fatouros, S.A. Morrison, E.E. Carpenter, J. Magn. Magn. Mater. 311, 464 (2007)

    ADS  Google Scholar 

  12. M.S. Dahiya, V.K. Tomer, S. Duhan, Applications of Nanocomposite Materials in Drug Delivery (Elsevier, Amsterdam, 2018), pp. 737–760

    Google Scholar 

  13. B.M. Berkovsky, V.F. Medvedve, M.S. Krakov, Magnetic Fluids: Engineering Applications (Oxford University Press, Oxford, 1993)

    Google Scholar 

  14. S. Kotresh, Y.T. Ravikiran, S.C. Vijaya Kumari, C.V.V. Ramana, A.S. Anu, K.M. Batoo, Polym. Bull. 75, 2475 (2018)

    Google Scholar 

  15. M. Kanwal, I. Ahmad, T. Meydan, J.A. Cuenca, P.I. Williams, M.T. Farid, G. Murtaza, J. Electron. Mater. 47, 5370 (2018)

    ADS  Google Scholar 

  16. R. Arulmurugan, G. Vaidyanathan, S. Sendhilnathan, B. Jeyadevan, J. Magn. Magn. Mater. 298, 83 (2006)

    ADS  Google Scholar 

  17. S. Agrawal, A. Parveen, A. Azam, J. Magn. Magn. Mater. 414, 144 (2016)

    ADS  Google Scholar 

  18. K.E. Sickafus, J.M. Wills, N.W. Grimes, J. Am. Ceram. Soc. 82, 3279–3292 (2004)

    Google Scholar 

  19. S. Chikazumi, C.D. Graham, Physics of Ferromagnetism, 2nd edn. (Oxford University Press, Oxford, 1997)

    Google Scholar 

  20. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd edn. (Wiley-IEEE Press, Hoboken, 2011)

    Google Scholar 

  21. S. Bera, A.A.M. Prince, S. Velmurugan, P.S. Raghavan, R. Gopalan, G. Panneerselvam, S.V. Narasimhan, J. Mater. Sci. 36, 5379 (2001)

    ADS  Google Scholar 

  22. S.K. Pradhan, S. Bid, M. Gateshki, V. Petkov, Mater. Chem. Phys. 93, 224 (2005)

    Google Scholar 

  23. G. Allaedini, S.M. Tasirin, P. Aminayi, Int. Nano Lett. 5, 183 (2015)

    Google Scholar 

  24. T. Shanmugavel, S.G. Raj, G. Rajarajan, G.R. Kumar, Procedia Mater. Sci. 6, 1725 (2014)

    Google Scholar 

  25. A.K. Rai, T.V. Thi, J. Gim, J. Kim, Mater. Charact. 95, 259 (2014)

    Google Scholar 

  26. D.H. Chen, X.R. He, Mater. Res. Bull. 36, 1369 (2001)

    Google Scholar 

  27. M. Houshiar, F. Zebhi, Z.J. Razi, A. Alidoust, Z. Askari, J. Magn. Magn. Mater. 371, 43 (2014)

    ADS  Google Scholar 

  28. K.V.P.M. Shafi, A. Gedanken, R. Prozorov, J. Balogh, Chem. Mater. 10, 3445 (1998)

    Google Scholar 

  29. A. Košak, D. Makovec, A. Žnidaršič, M. Drofenik, J. Eur. Ceram. Soc. 24, 959 (2004)

    Google Scholar 

  30. V. Pillai, D.O. Shah, J. Magn. Magn. Mater. 163, 243 (1996)

    ADS  Google Scholar 

  31. C.H. Peng, C.C. Hwang, C.K. Hong, S.Y. Chen, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 107, 295 (2004)

    Google Scholar 

  32. R.S. Melo, F.C. Silva, K.R.M. Moura, A.S. de Menezes, F.S.M. Sinfrônio, J. Magn. Magn. Mater. 381, 109 (2015)

    ADS  Google Scholar 

  33. K. Sue, K. Kimura, K. Arai, Mater. Lett. 58, 3229 (2004)

    Google Scholar 

  34. S. Phumying, S. Labuayai, E. Swatsitang, V. Amornkitbamrung, S. Maensiri, Mater. Res. Bull. 48, 2060 (2013)

    Google Scholar 

  35. B. Verma, C. Balomajumder, Environ. Sci. Pollut. Res. 27, 13844 (2020)

    Google Scholar 

  36. C. Rigo, E. da Cruz Severo, M. A. Mazutti, G. L. Dotto, S. L. Jahn, A. Gündel, M. M. Lucchese, O. Chiavone-Filho, and E. L. Foletto, (2017) Materials Research. Universidade Federal de Sao Carlos, Brazil, 311–316.

  37. M.S. Mustaffa, R.S. Azis, N.H. Abdullah, I. Ismail, I.R. Ibrahim, Sci. Rep. 9, 1 (2019)

    Google Scholar 

  38. M. Wang, Y. Zhang, C. Dong, G. Chen, H. Guan, Nanomater. Nanotechnol. 9, 184798041983782 (2019)

    Google Scholar 

  39. H. Wu, G. Liu, X. Wang, J. Zhang, Y. Chen, J. Shi, H. Yang, H. Hu, S. Yang, Acta Biomater. 7, 3496 (2011)

    Google Scholar 

  40. P. Seal, M. Hazarika, N. Paul, J. P. Borah, in AIP Conference Proceedings (American Institute of Physics Inc., 2018), p. 050083

  41. M.S. Dresselhaus, G. Dresselhaus, P. Avouris (eds.), Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Springer, Berlin Heidelberg, 2001)

    Google Scholar 

  42. R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science 297, 787–792 (2002)

    ADS  Google Scholar 

  43. J. Liu, M.J. Casavant, M. Cox, D.A. Walters, P. Boul, W. Lu, A.J. Rimberg, K.A. Smith, D.T. Colbert, R.E. Smalley, Chem. Phys. Lett. 303, 125 (1999)

    ADS  Google Scholar 

  44. G. Pirio, P. Legagneux, D. Pribat, K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, Nanotechnology 13, 1 (2002)

    ADS  Google Scholar 

  45. S. Santangelo, G. Faggio, G. Messina, E. Fazio, F. Neri, G. Neri, Sens. Actuat. B Chem. 178, 473 (2013)

    Google Scholar 

  46. A. Bianco, K. Kostarelos, M. Prato, Curr. Opin. Chem. Biol. 9, 674 (2005)

    Google Scholar 

  47. H.E. Misak, R. Asmatulu, M. O’Malley, E. Jurak, S. Mall, Int. J. Smart Nano Mater. 5, 34 (2014)

    Google Scholar 

  48. I.D. Rosca, F. Watari, M. Uo, T. Akasaka, Carbon 43, 3124 (2005)

    Google Scholar 

  49. T. Savage, S. Bhattacharya, B. Sadanadan, J. Gaillard, T.M. Tritt, Y.P. Sun, Y. Wu, S. Nayak, R. Car, N. Marzari, P.M. Ajayan, A.M. Rao, J. Phys. Condens. Matter 15, 5915 (2003)

    ADS  Google Scholar 

  50. A. Felten, C. Bittencourt, J.J. Pireaux, Nanotechnology 17, 1954 (2006)

    ADS  Google Scholar 

  51. S.C. Tsang, P.J.F. Harris, M.L.H. Green, Nature 362, 520 (1993)

    ADS  Google Scholar 

  52. V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, Carbon 46, 833–840 (2008)

    Google Scholar 

  53. K. Koziol, B.O. Boskovic, N. Yahya, Carbon and Oxide Nanostructures: Synthesis, Characterisation and Applications (Springer, Berlin, Heidelberg, 2010)

    Google Scholar 

  54. X.-B. Zhou, L. Shen, L. Li, T.-M. Huang, C.-F. Hu, W.-M. Pan, X.-H. Jin, J. Sun, L. Gao, Q. Huang, J. Phys. D Appl. Phys. 46, (2013)

  55. O.A. Oyetade, V.O. Nyamori, B.S. Martincigh, S.B. Jonnalagadda, RSC Adv. 5, 22724–22739 (2015)

    ADS  Google Scholar 

  56. S. Santangelo, E. Piperopoulos, E. Fazio, G. Faggio, S. Ansari, M. Lanza, F. Neri, G. Messina, C. Milone, Appl. Surf. Sci. 303, 446 (2014)

    ADS  Google Scholar 

  57. M. P. Abdullah, S. A. Zulkepli, in (2015).

  58. Y.-C. Chiang, W.-H. Lin, Y.-C. Chang, Appl. Surf. Sci. 257, 2415–2418 (2011)

    ADS  Google Scholar 

  59. W. Xia, C. Jin, S. Kundu, M. Muhler, Carbon 47, 919–922 (2009)

    Google Scholar 

  60. R.F. Hamilton Jr., C. Xiang, M. Li, I. Ka, F. Yang, D. Ma, D.W. Porter, N. Wu, A. Holian, Inhalation Toxicol. 25, 199 (2013)

    Google Scholar 

  61. R.S. Melo, P. Banerjee, A. Franco, J. Mater. Sci.: Mater. Electron. 29, 14657 (2018)

    Google Scholar 

  62. P. Mahanandia, P.N. Vishwakarma, K.K. Nanda, V. Prasad, K. Barai, A.K. Mondal, S. Sarangi, G.K. Dey, S.V. Subramanyam, Solid State Commun. 145, 143 (2008)

    ADS  Google Scholar 

  63. M.S. Saravanan, S.P. Babu, K. Sivaprasad, M. Jagannatham, Int. J. Eng. Sci. Technol. (2010). https://doi.org/10.4314/ijest.v2i5.60128

    Article  Google Scholar 

  64. F. Changjing, Z. Guogang, Z. Haijun, L. Shuang, Int. J. Electrochem. Sci. 8, 6269 (2013)

    Google Scholar 

  65. C.-H. Kiang, M. Endo, P.M. Ajayan, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. Lett. 81, 1869 (1998)

    ADS  Google Scholar 

  66. N.B. Velhal, N.D. Patil, A.R. Shelke, N.G. Deshpande, V.R. Puri, AIP Adv. 5, 97166 (2015)

    Google Scholar 

  67. Z. Liu, H. Xing, Y. Liu, H. Wang, H. Jia, X. Ji, J. Alloy. Compd. 731, 745 (2018)

    Google Scholar 

  68. C. Singh, S. Bansal, V. Kumar, K.B. Tikoo, S. Singhal, RSC Adv. 5, 39052 (2015)

    ADS  Google Scholar 

  69. P. Xiong, Y. Fu, L. Wang, X. Wang, Chem. Eng. J. 195–196, 149 (2012)

    Google Scholar 

  70. M.A. Jalil, S.S. Chowdhury, M.A. Sakib, S.M.E.H. Yousuf, E.K. Ashik, S.H. Firoz, M.A. Basith, J. Appl. Phys. 122, 084902 (2017)

    ADS  Google Scholar 

  71. F.R. Lamastra, F. Nanni, L. Camilli, R. Matassa, M. Carbone, G. Gusmano, Chem. Eng. J. 162, 430–435 (2010)

    Google Scholar 

  72. Y. Lan, X. Li, Y. Zong, Z. Li, Y. Sun, G. Tan, J. Feng, Z. Ren, X. Zheng, Ceram. Int. 42, 19110–19118 (2016)

    Google Scholar 

  73. R. Taziwa, E. Meyer, D. Katwire, L. Ntozakhe, J. Nanomater. 2017, 1 (2017)

    Google Scholar 

  74. R. Kumari, A. Sahai, N. Goswami, Prog. Nat. Sci. Mater. Int. 25, 300 (2015)

    Google Scholar 

  75. M. Razavi, A.H. Rajabi-Zamani, M.R. Rahimipour, R. Kaboli, M.O. Shabani, R. Yazdani-Rad, Ceram. Int. 37, 443 (2011)

    Google Scholar 

  76. M. Hossein-Zadeh, O. Mirzaee, Adv. Powder Technol. 25, 978 (2014)

    Google Scholar 

  77. C. Suryanarayana, M.G. Norton, X-Ray Diffraction (Springer, US, 1998)

    Google Scholar 

  78. R.A. Varin, J. Bystrzycki, A. Calka, Intermetallics 7, 785 (1999)

    Google Scholar 

  79. T. Pandiyarajan, B. Karthikeyan, J. Nanoparticle Res. (2012). https://doi.org/10.1007/s11051-011-0647-x

    Article  Google Scholar 

  80. A.H.M. Yusoff, M.N. Salimi, M.F. Jamlos, J. Phys: Conf. Ser. 908, 12065 (2017)

    Google Scholar 

  81. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn. (Pearson, London, 2001)

    Google Scholar 

  82. P. Bindu, S. Thomas, J. Theor. Appl. Phys. 8, 123 (2014)

    ADS  Google Scholar 

  83. A.B. González-Guerrero, E. Mendoza, E. Pellicer, F. Alsina, C. Fernández-Sánchez, L.M. Lechuga, Chem. Phys. Lett. 462, 256 (2008)

    ADS  Google Scholar 

  84. G. Yellapu, C.V. Chachin Vishal, M.P. Kandoth, P. Saha, R.R. Bojja, S. Gandham, R. Kanaparthi, Therm. Sci. Eng. Prog. 12, 13 (2019)

    Google Scholar 

  85. N. Mahmood, M. Islam, A. Hameed, S. Saeed, Polymers 5, 1380–1391 (2013)

    Google Scholar 

  86. J. Wu, L. Kong, Appl. Phys. Lett. 84, 4956 (2004)

    ADS  Google Scholar 

  87. E. Manova, B. Kunev, D. Paneva, I. Mitov, L. Petrov, C. Estournès, C. D’Orléans, J.-L. Rehspringer, M. Kurmoo, Chem. Mater. 16, 5689 (2004)

    Google Scholar 

  88. M.A. Gabal, E.A. Al-Harthy, Y.M. Al Angari, M. Abdel Salam, Chem. Eng. J. 255, 156 (2014)

    Google Scholar 

  89. T. Shanmugavel, S. Gokul Raj, G. Ramesh Kumar, G. Rajarajan, D. Saravanan, J. King Saud Univ. Sci. 27, 176–181 (2015)

    Google Scholar 

  90. G. Moraitis, Z. Špitalský, F. Ravani, A. Siokou, C. Galiotis, Carbon 49, 2702 (2011)

    Google Scholar 

  91. J.-P. Tessonnier, D. Rosenthal, T.W. Hansen, C. Hess, M.E. Schuster, R. Blume, F. Girgsdies, N. Pfänder, O. Timpe, D.S. Su, R. Schlögl, Carbon 47, 1779 (2009)

    Google Scholar 

  92. A. Agrawal, J.Y. Park, P. Sen, G.-C. Yi, Appl. Surf. Sci. 505, 144392 (2020)

    Google Scholar 

  93. J. Hodkiewicz, in (2010)

  94. A. K. Cuentas-Gallegos, C. Frausto, L. A. Ortiz-Frade, and G. Orozco, Vibrational Spectroscopy (2011)

  95. B. Anand, S.R. Krishnan, R. Podila, S.S.S. Sai, A.M. Rao, R. Philip, Phys. Chem. Chem. Phys. 16, 8168 (2014)

    Google Scholar 

  96. P.R. Graves, C. Johnston, J.J. Campaniello, Mater. Res. Bull. 23, 1651–1660 (1988)

    Google Scholar 

  97. Z.H. Zhou, J.M. Xue, J. Wang, H.S.O. Chan, T. Yu, Z.X. Shen, J. Appl. Phys. 91, 6015–6020 (2002)

    ADS  Google Scholar 

  98. T. Valdés-Solís, P. Tartaj, G. Marbán, A.B. Fuertes, Nanotechnology 18, 145603 (2007)

    ADS  Google Scholar 

  99. Á. Gallo-Cordova, A. Espinosa, A. Serrano, L. Gutiérrez, N. Menéndez, M. del Puerto Morales, E. Mazarío, Mater. Chem. Frontiers 4, 3063–3073 (2020)

    Google Scholar 

  100. W. Liu, Y. Chan, J. Cai, C. Leung, C. Mak, K. Wong, F. Zhang, X. Wu, X.D. Qi, J. Appl. Phys. 112, 104306 (2012)

    ADS  Google Scholar 

  101. M.A. Atieh, O.Y. Bakather, B. Al-Tawbini, A.A. Bukhari, F.A. Abuilaiwi, M.B. Fettouhi, Bioinorg. Chem. Appl. 2010, 1 (2010)

    Google Scholar 

  102. D.S. Ahmed, A.J. Haider, M.R. Mohammad, Energy Procedia 36, 1111 (2013)

    Google Scholar 

  103. Y.-H. Li, C. Xu, B. Wei, X. Zhang, M. Zheng, D. Wu, P.M. Ajayan, Chem. Mater. 14, 483 (2002)

    Google Scholar 

  104. N.I. Kovtyukhova, T.E. Mallouk, L. Pan, E.C. Dickey, J. Am. Chem. Soc. 125, 9761 (2003)

    Google Scholar 

  105. B. Unal, M. Senel, A. Baykal, H. Sözeri, Curr. Appl. Phys. 13, 1404 (2013)

    ADS  Google Scholar 

  106. X. Yan, B.K. Tay, Y. Yang, J. Phys. Chem. B 110, 25844 (2006)

    Google Scholar 

  107. N. Ali, M. Saleem, K. Shahzad, A. Chughtai, W. Khan, Life Sci. J. 11, 137 (2014)

    Google Scholar 

  108. C. Branca, F. Frusteri, V. Magazù, A. Mangione, J. Phys. Chem. B 108, 3469 (2004)

    Google Scholar 

  109. Y. Si, E.T. Samulski, Nano Lett. 8, 1679 (2008)

    ADS  Google Scholar 

  110. E. Andrijanto, S. Shoelarta, G. Subiyanto, S. Rifki, in AIP Conference Proceedings American Institute of Physics Inc., (2016), p 020003.

  111. R. Kumar, M..K.. Kamakshi, K. Awasthi, Int. J. Hydro. Energy 42, 15203 (2017)

    Google Scholar 

  112. G. Sathishkumar, C. Venkataraju, K. Sivakumar, J. Mater. Sci. Mater. Electron. 22, 1715 (2011)

    Google Scholar 

  113. K.B. Modi, M.K. Rangolia, M.C. Chhantbar, H.H. Joshi, J. Mater. Sci. 41, 7308 (2006)

    ADS  Google Scholar 

  114. H. Cao, M. Zhu, Y. Li, J. Liu, Z. Ni, Z. Qin, J. Solid State Chem. 180, 3218 (2007)

    ADS  Google Scholar 

  115. Y. Koseouglu, M. Bay, M. Tan, A. Baykal, H. Sozeri, R. Topkaya, N. Akdougan, J. Nanopart. Res. 13, 2235 (2010)

    Google Scholar 

  116. J. Wan, X. Jiang, H. Li, K. Chen, J. Mater. Chem. 22, 13500 (2012)

    Google Scholar 

  117. Z. Karimi, Y. Mohammadifar, H. Shokrollahi, Sh.K. Asl, Gh. Yousefi, L. Karimi, J. Magn. Magn. Mater. 361, 150 (2014)

    ADS  Google Scholar 

  118. I. Ahmad, A. Hakeem, P. Mao, G. Xiao, I. Ahmad, G. Mustafa, M. Kanwal, M. Hussain, Dig. J. Nanomater. Biostruct. 10, 1393 (2015)

    Google Scholar 

  119. R. Safi, A. Ghasemi, R. Shoja-Razavi, M. Tavousi, J. Magn. Magn. Mater. 396, 288 (2015)

    ADS  Google Scholar 

  120. L. Ai, C. Zhang, F. Liao, Y. Wang, M. Li, L. Meng, J. Jiang, J. Hazard. Mater. 198, 282 (2011)

    Google Scholar 

  121. V. Gupta, T. A. Saleh, in Carbon Nanotubes - From Research to Applications (InTech, 2011)

  122. U.N. Trivedi, K.H. Jani, K.B. Modi, H.H. Joshi, J. Mater. Sci. Lett. 19, 1271 (2000)

    Google Scholar 

  123. C. Zhao, L. Ji, H. Liu, G. Hu, S. Zhang, M. Yang, Z. Yang, J. Solid State Chem. 177, 4394 (2004)

    ADS  Google Scholar 

  124. T.I.T. Okpalugo, P. Papakonstantinou, H. Murphy, J. Mclaughlin, N.M.D. Brown, Carbon 43, 2951 (2005)

    Google Scholar 

  125. C. Turquat, C. Leroux, A. Gloter, V. Serin, G. Nihoul, Int. J. Inorg. Mater. 3, 1025 (2001)

    Google Scholar 

  126. P.S. Antonel, F.M. Berhó, G. Jorge, F.V. Molina, Synthet. Metals 199, 292 (2015)

    Google Scholar 

  127. M.S. Ferreira, S. Sanvito, Phys. Rev. B (2004). https://doi.org/10.1103/PhysRevB.69.035407

    Article  Google Scholar 

  128. O. Cespedes, M.S. Ferreira, S. Sanvito, M. Kociak, J.M.D. Coey, J. Phys. Condens. Matter 16, L155 (2004)

    ADS  Google Scholar 

  129. W.-C. Hu, S. Sari, S.-S. Hou, T.-H. Lin, Materials 9, 939 (2016)

    ADS  Google Scholar 

  130. J. Vejpravova, B. Pacakova, M. Kalbac, Analyst 141, 2639 (2016)

    ADS  Google Scholar 

  131. K. Lipert, M. Ritschel, A. Leonhardt, Y. Krupskaya, B. Buchner, R. Klingeler, J. Phys. Conf. Ser. 200, 72061 (2010)

    Google Scholar 

  132. S. Al Khabouri, S. Al Harthi, T. Maekawa, Y. Nagaoka, M.E. Elzain, A. Al Hinai, A.D. Al-Rawas, A.M. Gismelseed, A.A. Yousif, Nanoscale Res. Lett. (2015). https://doi.org/10.1186/s11671-015-0971-7

    Article  Google Scholar 

  133. R. Ghunaim, M. Scholz, C. Damm, B. Rellinghaus, R. Klingeler, B. Buchner, M. Mertig, S. Hampel, Beilstein J. Nanotechnol. 9, 1024 (2018)

    Google Scholar 

Download references

Funding

The authors did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

MA-FH contributed to conceptualization, methodology, investigation, writing—original draft, visualization MA-M contributed to conceptualization, supervision, writing—reviewing and editing MRR contributed to project administration, funding acquisition SMH contributed to resources, funding acquisition.

Corresponding author

Correspondence to M. Al-Mamun.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.AF., Al-Mamun, M., Rahman, M.R. et al. Effect of in-situ growth and separate addition method in hydrothermal process on the structural and magnetic properties of CoNiFe2O4@functionalized CNTs nanocomposite. Appl. Phys. A 127, 896 (2021). https://doi.org/10.1007/s00339-021-05049-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05049-9

Keywords

Navigation