Skip to main content
Log in

Doppler-free spectroscopy of weak transitions: An analytical model applied to formaldehyde

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Experimental observation of Doppler-free signals for weak transitions can be greatly facilitated by an estimate for their expected amplitudes. We have derived an analytical model which allows the Doppler-free amplitude to be estimated for small Doppler-free signals. Application of this model to formaldehyde allows the amplitude of experimentally observed Doppler-free signals to be reproduced to within the experimental error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.E. Lamb, Phys. Rev. 134, A1429 (1964)

    Article  ADS  Google Scholar 

  2. A. Szöke, A. Javan, Phys. Rev. Lett. 10, 521 (1963)

    Article  ADS  Google Scholar 

  3. R.A. McFarlane, W.R. Bennett Jr., W.E. Lamb Jr., Appl. Phys. Lett. 2, 189 (1963)

    Article  ADS  Google Scholar 

  4. S.A. Rangwala, T. Junglen, T. Rieger, P.W.H. Pinkse, G. Rempe, Phys. Rev. A 67, 043406 (2003)

    Article  ADS  Google Scholar 

  5. T. Rieger, T. Junglen, S.A. Rangwala, P.W.H. Pinkse, G. Rempe, Phys. Rev. Lett. 95, 173002 (2005)

    Article  ADS  Google Scholar 

  6. G.H. Dieke, G.B. Kistiakowsky, Phys. Rev. 45, 4 (1934)

    Article  ADS  Google Scholar 

  7. G. Herzberg, Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules (Van Nostrand Reinhold Company, New York, 1966)

    Google Scholar 

  8. D.J. Clouthier, D.A. Ramsay, Ann. Rev. Phys. Chem. 34, 31 (1983)

    Article  Google Scholar 

  9. F.D. Pope, C.A. Smith, M.N.R. Ashfold, A.J. Orr-Ewing, Phys. Chem. Chem. Phys. 7, 79 (2005)

    Article  Google Scholar 

  10. P.R. Berman, Appl. Phys. 6, 283 (1975)

    Article  ADS  Google Scholar 

  11. S.N. Jabr, W.R. Bennett, Phys. Rev. A 21, 1518 (1980)

    Article  ADS  Google Scholar 

  12. M.R. Spiegel, J. Liu, Mathematical Handbook of Formulas and Tables (McGraw-Hill, USA, 1998) 2nd edn.

  13. C. Moore, J. Weisshaar, Ann. Rev. Phys. Chem. 34, 525 (1983)

    Article  Google Scholar 

  14. At longer wavelengths, saturation spectroscopy can be done directly in the laser cavity, as e.g., in: R.L. Barger, J.L. Hall, Phys. Rev. Lett. 22, 4 (1969)

  15. G.C. Bjorklund, Opt. Lett. 5, 15 (1980)

    Article  ADS  Google Scholar 

  16. G.C. Bjorklund, M.D. Levenson, W. Lenth, C. Ortiz, Appl. Phys. B 32, 145 (1983)

    Article  ADS  Google Scholar 

  17. M. Motsch, M. Schenk, M. Zeppenfeld, M. Schmitt, W.L. Meerts, P.W.H. Pinkse, G. Rempe, in preparation

  18. W.L. Meerts, M. Schmitt, Int. Rev. Phys. Chem. 25, 353 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.W.H. Pinkse.

Additional information

PACS

39.30.+w; 42.62.Fi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeppenfeld, M., Motsch, M., Pinkse, P. et al. Doppler-free spectroscopy of weak transitions: An analytical model applied to formaldehyde. Appl. Phys. B 89, 475–481 (2007). https://doi.org/10.1007/s00340-007-2876-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2876-3

Keywords

Navigation