Skip to main content

Advertisement

Log in

Low-cost low-threshold diode end-pumped Tm:YAG laser at 2.016 μm

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report a low-threshold continuous-wave Tm:YAG laser that can be excited near 785 nm with low-cost, single-mode AlGaAs laser diodes. Low-threshold operation was achieved using a tightly focused, astigmatically compensated x-cavity containing a 2-mm-thick Tm:YAG crystal with 5 % Tm3+ concentration. Two linearly polarized single-mode diodes operating at 785.8 nm were polarization coupled to end pump the resonator. With a 6 % output coupler, as high as 32 mW of output power could be obtained at 2016 nm with 184 mW of incident pump power. The output could be further tuned in the 1935–2035 nm range. Slope efficiency measurements indicated that cross-relaxation was very effective at this doping level. With a 2 % output coupler, lasing could be obtained with as low as 32.3 mW of pump power. In the limit of vanishing output coupling, the incident threshold pump power could be reduced to as low as 25 mW. To our knowledge, this is among the lowest lasing thresholds reported to date for continuous-wave, room-temperature thulium lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. U. Demirbas, A. Sennaroglu, F.X. Kaertner, J.G. Fujimoto, Highly efficient, low-cost femtosecond Cr3+: LiCAF laser pumped by single-mode diodes. Opt Lett 33, 590–592 (2008)

    Article  ADS  Google Scholar 

  2. U. Demirbas, D. Li, J.R. Birge, A. Sennaroglu, G.S. Petrich, L.A. Kolodziejski, F.X. Kaertner, J.G. Fujimoto, Low-cost, single-mode diode-pumped Cr:Colquiriite lasers. Opt Express 17, 14374–14388 (2009)

    Article  ADS  Google Scholar 

  3. U. Demirbas, G.S. Petrich, D. Li, A. Sennaroglu, L.A. Kolodziejski, F.X. Kärtner, J.G. Fujimoto, Femtosecond tuning of Cr:colquiriite lasers with AlGaAs-based saturable Bragg reflectors. J Opt Soc Am B 28, 986–993 (2011)

    Article  ADS  Google Scholar 

  4. M. Wolters, M. Kramer, J. Becker, M. Christgen, U. Nagele, F. Imkamp, M. Burchardt, A. Merseburger, M. Kuczyk, T. Bach, A. Gross, T. Herrmann, Tm:YAG laser en bloc mucosectomy for accurate staging of primary bladder cancer: early experience. World J Urol 29, 429–432 (2011)

    Article  Google Scholar 

  5. T. Bilici, H.O. Tabakoglu, N. Topaloglu, H. Kalaycioglu, A. Kurt, A. Sennaroglu, M. Gulsoy, Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding. J Biomed Opt 15, 038001 (2010)

    Article  Google Scholar 

  6. D.P. Poppas, D.S. Scherr, Laser tissue welding: a urological surgeon’s perspective. Hemophilia 4, 456–462 (1998)

    Article  Google Scholar 

  7. M. Talmor, C.B. Bleustein, D.P. Poppas, Laser tissue welding: a biotechnological advance for the future. Arch Facial Plast Surg 3, 207–213 (2001)

    Article  Google Scholar 

  8. R. Targ, B.C. Steakley, J.G. Hawley, L.L. Ames, P. Forney, D. Swanson, R. Stone, R.G. Otto, V. Zarifis, P. Brockman, R.S. Calloway, S.H. Klein, P.A. Robinson, Coherent lidar airborne wind sensor II: flight-test results at 2 and 10 vm. Appl Opt 35, 7117–7127 (1996)

    Article  ADS  Google Scholar 

  9. P.A. Budni, L.A. Pomeranz, M.L. Lemons, C.A. Miller, J.R. Mosto, E.P. Chicklis, Efficient mid-infrared laser using 1.9-mm pumped Ho:YAG and ZnGeP2 optical parametric oscillators. J Opt Soc Am B 17, 723–728 (2000)

    Article  ADS  Google Scholar 

  10. Carrig TJ, Hankla AK, Wagner GJ, Rawle CB, and Kinnie ITM (2002) Tunable infrared laser sources for DIAL. In: SPIE laser radar technology and applications VII, p 147–155

  11. R.C. Stoneman, L. Esterowitz, Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers. Opt Lett 15, 486–488 (1990)

    Article  ADS  Google Scholar 

  12. H. Kalaycioglu, A. Sennaroglu, Low-threshold continuous-wave Tm3+:YAlO3 laser. Opt Commun 281, 4071–4074 (2008)

    Article  ADS  Google Scholar 

  13. Dergachev A, Wall K, and Moulton PF (2002) A CW side-pumped Tm:YLF laser. In: OSA TOPS advanced solid state lasers, p 343–346

  14. Cerny P, Sulc J, and Jelinkova H (2006) Continously tunable diode-pumped Tm:YAP laser. In: SPIE solid state lasers and amplifiers II

  15. N.P. Barnes, M.G. Jani, R.L. Hutcheson, Diode-pumped, room-temperature Tm:LuAG laser. Appl Opt 34, 4290–4294 (1995)

    Article  ADS  Google Scholar 

  16. V. Petrov, F. Guell, J. Massons, J. Gavalda, R.M. Sole, M. Aguilo, F. Diaz, U. Griebner, Efficient tunable laser operation of Tm: KGd (WO4)(2) in the continuous-wave regime at room temperature. IEEE J Quantum Electron 40, 1244–1251 (2004)

    Article  ADS  Google Scholar 

  17. H. Saito, S. Chaddha, R.S.F. Chang, N. Djeu, Efficient 1.94-mm Tm3+ laser in YVO4 host. Opt Lett 17, 189–191 (1992)

    Article  ADS  Google Scholar 

  18. Fornasiero L, Berner N, Dicks BM, Mix E, Peters V, Petermann K and Huber G (1999) Broadly tunable laser emission from Tm:Y2O3 and Tm:Sc2O3 at 2 μm. In: Advanced solid state lasers, p WD5

  19. P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, G. Huber, Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm. Opt Lett 36, 948–950 (2011)

    Article  ADS  Google Scholar 

  20. N. Coluccelli, G. Galzerano, P. Laporta, F. Cornacchia, D. Parisi, M. Tonelli, Tm-doped LiLuF4 crystal for efficient laser action in the wavelength range from 1.82 to 2.06 μm. Opt Lett 32, 2040–2042 (2007)

    Article  ADS  Google Scholar 

  21. G.J. Quarles, A. Rosenbaum, C.L. Marquardt, L. Esterowitz, Efficient Room-Temperature Operation of a Flash-Lamp-Pumped, Cr, Tm-Yag Laser at 2.01 mm. Opt Lett 15, 42–44 (1990)

    Article  ADS  Google Scholar 

  22. P.J.M. Suni, S.W. Henderson, 1-mJ/pulse Tm:YAG laser pumped by a 3-W diode laser. Opt Lett 16, 817–819 (1991)

    Article  ADS  Google Scholar 

  23. E.C. Honea, R.J. Beach, S.B. Sutton, J.A. Speth, I.V. Mitchell, J.A. Skidmore, M.A. Emanuel, S.A. Payne, 115-W Tm:YAG CW diode-pumped solid-state laser. IEEE J Quantum Electron 33, 1592–1600 (1997)

    Article  ADS  Google Scholar 

  24. C. Bollig, R.A. Hayward, W.A. Clarkson, D.C. Hanna, 2-W Ho:YAG laser intracavity pumped by a diode-pumped Tm:YAG laser. Opt Lett 23, 1757–1759 (1998)

    Article  ADS  Google Scholar 

  25. C. Gao, R. Wang, Z. Lin, M. Gao, L. Zhu, Y. Zheng, Y. Zhang, 2 μm single-frequency Tm:YAG laser generated from a diode-pumped L-shaped twisted mode cavity. Appl Phys B 107, 67–70 (2012)

    Article  ADS  Google Scholar 

  26. C. Li, J. Song, D. Shen, N.S. Kim, K-i Ueda et al., Diode-pumped high-effiency Tm:YAG lasers. Opt Express 4, 12–18 (1999)

    Article  ADS  Google Scholar 

  27. A. Sennaroglu, Photonics and laser engineering: principles, devices, and applications (McGraw-Hill, New York, 2010)

    Google Scholar 

  28. A. Sennaroglu, A. Kurt, G. Özen, Effect of cross relaxation on the 1470 and 1800 nm emissions in Tm3+:TeO2-CdCl2 glass. J Phys Condens Matter 16, 2471–2478 (2004)

    Article  ADS  Google Scholar 

  29. F. Cornacchia, D. Parisi, C. Bernardini, A. Toncelli, M. Tonelli, Efficient, diode-pumped Tm3+:BaY2F8 vibronic laser. Opt Express 12, 1982–1989 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Aref Mostafazadeh for his valuable contributions in the initial construction of the laser and to Huseyin Cankaya and M. Natali Cizmeciyan for assistance in the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alphan Sennaroglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyatlı, E., Naghizadeh, S., Kurt, A. et al. Low-cost low-threshold diode end-pumped Tm:YAG laser at 2.016 μm. Appl. Phys. B 109, 221–225 (2012). https://doi.org/10.1007/s00340-012-5188-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5188-1

Keywords

Navigation