Skip to main content
Log in

A complicated Duffing oscillator in the surface-electrode ion trap

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The oscillation coupling and different nonlinear effects are observed in a single trapped 40Ca+ ion confined in our home-built surface-electrode trap (SET). The coupling and the nonlinearity are originated from the high-order multipole potentials, such as hexapole and octopole potentials, due to different layouts and the fabrication asymmetry of the SET. We solve a complicated Duffing equation with coupled oscillation terms by the multiple-scale method, which fits the experimental values very well. Our investigation in the SET helps for exploring multi-dimensional nonlinearity using currently available techniques and for suppressing instability of qubits in quantum information processing with trapped ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. This is a rough estimate for the measured values (i.e., the blue stars) which are nearly constant. The blue stars higher than the red stars mean the fact that laser heating is involved. As a result, for a careful understanding, it needs a serious solution to the 3D euqations of motion of the system.

References

  1. A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations (Wiley-Interscience, New York, 1979)

    MATH  Google Scholar 

  2. M.I. Dykman, M.A. Krivoglaz, Soviet Scientific Reviews Volume (Harwood Academic, New York, 1984) pp. 265

    Google Scholar 

  3. L.D. Landau, E.M. Lifshitz, Mechanics, 3rd edn. (Pergamon, New York, 1976)

    Google Scholar 

  4. A.H. Nayfeh, Introduction to Perturbation Techniques. (Wiley, New York, 1981)

    MATH  Google Scholar 

  5. V.I. Arnold, Geometrical Methods in the Theroy of Ordinaty Differential Equations, Volume 250 of Grundlehren der mathematischen Wissenschaften, 2nd edn. (Springer, New York, 1988)

    Book  Google Scholar 

  6. S.H. Strogatz, Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering (Perseus Books, New York City, 1994)

    Google Scholar 

  7. H.B. Chan, M.I. Dykman, C. Stambaugh, Phys. Rev. Lett. 100, 130602 (2008)

    Article  ADS  Google Scholar 

  8. M.I. Dykman, B. Golding, D. Ryvkine, Phys. Rev. Lett. 92, 080602 (2004)

    Article  ADS  Google Scholar 

  9. B. Yurke, E. Buks, J. Lightwave Tech. 24, 5054 (2006)

    Article  ADS  Google Scholar 

  10. E. Buks, B. Yurke, Phys. Rev. A 73, 23815 (2006)

    Article  ADS  Google Scholar 

  11. D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Rev. Mod. Phys. 75, 281 (2003)

    Article  ADS  Google Scholar 

  12. W. Paul, Rev. Mod. Phys. 62, 531 (1990)

    Article  ADS  Google Scholar 

  13. N. Akerman, S. Kotler, Y. Glickman, Y. Dallal, A. Keselman, R. Ozeri, Phys. Rev. A 82, 061402(R) (2010)

    Article  ADS  Google Scholar 

  14. A.A. Makarov, Anal. Chem. 68, 4257 (1996)

    Article  Google Scholar 

  15. A. Drakoudis, M. Söllner, G. Werth, Int. J. Mass. Spectrom. 252, 61 (2006)

    Article  ADS  Google Scholar 

  16. K. Vahala, M. Herrmann, S. Knünz, V. Batteiger, G. Saathoff, T.W. Hünsch, Th. Udem, Nat. Phys. 5, 682 (2009)

    Article  Google Scholar 

  17. S. Knünz, M. Herrmann, V. Batteiger, G. Saathoff, T.W. Hünsch, K. Vahala, Th. Udem, Phys. Rev. Lett. 105, 013004 (2010)

    Article  ADS  Google Scholar 

  18. D. Kielpinksi, C. Monroe, D.J. Wineland, Nature (London) 417, 709 (2002)

    Article  ADS  Google Scholar 

  19. J.H. Wesenberg, Phys. Rev. A 78, 063410 (2008)

    Article  ADS  Google Scholar 

  20. M.G. House, Phys. Rev. A 78, 033402 (2008)

    Article  ADS  Google Scholar 

  21. R. Bradford Blakestad, Transport of Trapped-Ion Qubits Within a Scalable Quantum Processor [D] (California Institute of Technology, Pasadena, 2002)

    Google Scholar 

  22. L. Chen, W. Wan, Y. Xie, H.-Y. Wu, F. Zhou, M. Feng, Chin. Phys. Lett. 30, 013702 (2013)

    Article  ADS  Google Scholar 

  23. D.T.C. Allcock, J.A. Sherman, D.N. Stacey, A.H. Burrell, M.J. Curtis, G. Imreh, N.M. Linke, D.J. Szwer, S.C. Webster, A.M. Steane, D.M. Lucas, New J. Phys. 12, 053026 (2010)

    Article  ADS  Google Scholar 

  24. G. Littich, Electrostatic Control and Transport of Ions on a Planar Trap for Quantum Information Processing (ETH Zürich and University of California, Berkeley, 2011)

    Google Scholar 

  25. A. Doroudi, Phys. Rev. E 80, 056603 (2009)

    Article  ADS  Google Scholar 

  26. S. Sevugarajan, A.G. Menon, Int. J. Mass Spectrom. 209, 209 (2001)

    Article  ADS  Google Scholar 

  27. M. Vedel, J. Rocher, M. Knoop, F. Vedel, Appl. Phys. B 66, 191 (1998)

    Article  ADS  Google Scholar 

  28. A.H. Nayfeh, Problems in Perturbation (Wiley-Interscience, New York, 1985)

    MATH  Google Scholar 

  29. A.H. Nayfeh, J. Sound Vib. 92, 363 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by National Fundamental Research Program of China under Grant No. 2012CB922102, and by National Natural Science Foundation of China under Grants No. 11274352 and No. 11104325.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Chen or Mang Feng.

Appendices

Appendix 1: The nonlinear coefficients in Eq. (4)

Our calculation is based on Eq. (4), in which the nonlinear coefficients originate from the hexapole and octopole potentials. By setting e and m to be the electric quantity and the mass of a single calcium ion, we have the nonlinear coefficients as

$$ \alpha_{3}=\frac{36e^{2}r_{0}^{2}\left( U_{13}^{\ast }\right) ^{2}M_{13}^{2}}{m^{2}r_{0}^{8}\varOmega ^{2}}+\frac{140eM_{21}\left[ mr_{0}^{4}(V_{21}^{\ast })\varOmega ^{2}+8er_{0}^{2}\left( U_{21}^{\ast }\right) \left( U_{7}^{\ast }\right) M_{7}\right]}{m^{2}r_{0}^{8}\varOmega ^{2}}, $$
(10)
$$\alpha_{2}=\frac{6er_{0}M_{13}\left[mr_{0}^{4}(V_{13}^{\ast})\varOmega ^{2}+6er_{0}^{2}\left( U_{7}^{\ast }\right) \left(U_{13}^{\ast }\right) M_{7}\right] }{m^{2}r_{0}^{8}\varOmega ^{2}}, $$
(11)
$$ \begin{aligned} \alpha_{21} &=\frac{3e\left[ 70er_{0}^{2}M_{6}M_{21}(U_{6}^{\ast })(U_{21}^{\ast })+42er_{0}^{2}M_{7}M_{20}(U_{7}^{\ast })(U_{20}^{\ast }) \right] }{m^{2}r_{0}^{8}\varOmega ^{2}} \\ &\quad+\frac{3e\left[ 24er_{0}^{2}M_{12}M_{13}(U_{12}^{\ast })(U_{13}^{\ast })+7mr_{0}^{4}\varOmega ^{2}M_{20}(V_{20}^{\ast })\right] }{m^{2}r_{0}^{8} \varOmega ^{2}}, \end{aligned} $$
(12)
$$ \begin{aligned} \alpha_{22} &=\frac{3e\left[ 70er_{0}^{2}M_{8}M_{21}(U_{8}^{\ast })(U_{21}^{\ast})+42er_{0}^{2}M_{7}M_{22}(U_{7}^{\ast })(U_{22}^{\ast}) \right] }{m^{2}r_{0}^{8}\varOmega ^{2}} \\ &\quad+\frac{3e\left[ 24er_{0}^{2}M_{13}M_{14}(U_{13}^{\ast})(U_{14}^{\ast })+7mr_{0}^{4}\varOmega ^{2}M_{22}(V_{22}^{\ast })\right] }{m^{2}r_{0}^{8} \varOmega ^{2}}, \end{aligned} $$
(13)
$$ \begin{aligned} \alpha_{4} &=\frac{e\left[ 32er_{0}^{2}\left( U_{12}^{\ast }\right) ^{2}M_{12}^{2}-18er_{0}^{2}\left( U_{13}^{\ast }\right) ^{2}M_{13}^{2}-6er_{0}^{2}\left( U_{13}^{\ast }\right) \left( U_{15}^{\ast }\right) M_{13}M_{15}+21er_{0}^{2}\left( U_{6}^{\ast }\right) \left( U_{20}^{\ast}\right) M_{6}M_{20}\right] }{m^{2}r_{0}^{8}\varOmega ^{2}} \\ &\quad+\frac{e\left[ -60mr_{0}^{4}(V_{21}^{\ast})\varOmega ^{2}M_{21}-14mr_{0}^{4}(V_{23}^{\ast})\varOmega ^{2}M_{23}-240er_{0}^{2}(U_{7}^{\ast})\left( U_{21}^{\ast}\right) M_{7}M_{21}-56er_{0}^{2}(U_{7}^{\ast})\left( U_{23}^{\ast}\right) M_{7}M_{23}\right] }{m^{2}r_{0}^{8}\varOmega ^{2}}, \end{aligned} $$
(14)
$$ \begin{aligned} \alpha_{5} &=\frac{e\left[ 32er_{0}^{2}\left( U_{14}^{\ast }\right) ^{2}M_{14}^{2}-18er_{0}^{2}\left( U_{13}^{\ast }\right) ^{2}M_{13}^{2}+6er_{0}^{2}\left( U_{13}^{\ast }\right) \left( U_{15}^{\ast }\right) M_{13}M_{15}+21er_{0}^{2}M_{8}M_{22}(U_{8}^{\ast })(U_{22}^{\ast }) \right] }{m^{2}r_{0}^{8}\varOmega ^{2}} \notag \\ &\quad+\frac{e\left[-60mr_{0}^{4}(V_{21}^{\ast })\varOmega ^{2}M_{21}+14mr_{0}^{4}(V_{23}^{\ast })\varOmega^{2}M_{23}-240er_{0}^{2}(U_{7}^{\ast })\left( U_{21}^{\ast }\right) M_{7}M_{21}+56er_{0}^{2}(U_{7}^{\ast })\left( U_{23}^{\ast }\right) M_{7}M_{23}\right] }{m^{2}r_{0}^{8}\varOmega ^{2}}, \end{aligned} $$
(15)
$$ \begin{aligned} \alpha_{6} &=\frac{e\left[ 6er_{0}^{2}\left( U_{13}^{\ast }\right) \left(U_{11}^{\ast }\right) M_{13}M_{11}+14mr_{0}^{4}(V_{19}^{\ast})\varOmega ^{2}M_{19}+21er_{0}^{2}\left( U_{6}^{\ast}\right) \left( U_{22}^{\ast }\right) M_{6}M_{22}\right] }{m^{2}r_{0}^{8}\varOmega ^{2}} \\ &\quad+\frac{e\left[ 64er_{0}^{2}(U_{12}^{\ast })\left(U_{14}^{\ast}\right) M_{12}M_{14}+56er_{0}^{2}\left( U_{7}^{\ast }\right) \left( U_{19}^{\ast }\right) M_{7}M_{19}+21er_{0}^{2}M_{8}M_{20}(U_{8}^{\ast })(U_{20}^{\ast }) \right] }{m^{2}r_{0}^{8}\varOmega ^{2}}, \end{aligned} $$
(16)
$$\alpha_{7}=\frac{e\left[6er_{0}^{3}\left( U_{13}^{\ast }\right) \left(U_{6}^{\ast }\right) M_{13}M_{6}+8mr_{0}^{5}(V_{12}^{\ast})\varOmega ^{2}M_{12}+32er_{0}^{3}\left( U_{12}^{\ast }\right) \left( U_{7}^{\ast }\right) M_{12}M_{7}\right] }{m^{2}r_{0}^{8}\varOmega ^{2}}, $$
(17)
$$ \alpha_{8}=\frac{e}{m^{2}r_{0}^{8}\varOmega ^{2}}\left[ 8mr_{0}^{5}(V_{14}^{ \ast })\varOmega ^{2}M_{14}+32er_{0}^{3}\left( U_{14}^{\ast }\right) \left( U_{7}^{\ast }\right) M_{14}M_{7}+6er_{0}^{3}M_{8}M_{13}(U_{8}^{\ast })(U_{13}^{\ast })\right] , $$
(18)

with \(\omega_{0z}^{2}=e\left[ 8er_{0}^{4}\left( U_{7}^{\ast }\right)^{2}M_{7}^{2}+4mr_{0}^{6}(V_{7}^{\ast })\varOmega^{2}M_{7}\right] /m^{2}r_{0}^{8}\varOmega^{2},\) and the scaling factor r 0 (see definition in [24]).

Appendix 2: Details of the steady-state solution Eq. (5)

Equation (5) is obtained by the standard steps of the multiple-scale method. Starting from Eq. (4), we assume that the driving frequency is a perturbative expansion of harmonic oscillator frequency [28], i.e., \(\omega_{z}=\omega_{0z}+\epsilon^{2}\sigma,\) with a small dimensionless parameter \(\epsilon.\) Following the method in [29], we rewrite Eq. (4) by setting \(z=\epsilon u, x=\epsilon p, y=\epsilon q,\) the damping term as \(2\epsilon^{3}\mu \dot{u}\) and the driving term as \(\epsilon^{3}k_{z}\cos (\omega_{z}t).\) Introducing a new parameter \(T_{i}=\epsilon^{i}t (i=0,1,2),\) we rewrite upq as,

$$ \begin{aligned} u&=\epsilon ^{0}u_{0}\left( T_{0},T_{1},T_{2}\right) +\epsilon ^{1}u_{1}\left( T_{0},T_{1},T_{2}\right) +\epsilon ^{2}u_{2}\left( T_{0},T_{1},T_{2}\right) , \\ p&=\epsilon ^{0}p_{0}\left(T_{0},T_{1},T_{2}\right) +\epsilon ^{1}p_{1}\left( T_{0},T_{1},T_{2}\right) +\epsilon ^{2}p_{2}\left( T_{0},T_{1},T_{2}\right) , \\ q&=\epsilon ^{0}q_{0}\left( T_{0},T_{1},T_{2}\right) +\epsilon ^{1}q_{1}\left( T_{0},T_{1},T_{2}\right) +\epsilon ^{2}q_{2}\left( T_{0},T_{1},T_{2}\right) . \end{aligned} $$
(19)

Then we compare the coefficients of \(\epsilon ^{0}, \epsilon ^{1}\) and \(\epsilon ^{2},\) which yields,

$$ D_{0}^{2}u_{0}+\omega_{0z}^{2}u_{0}=0, $$
(20)
$$ D_{0}^{2}u_{1}+\omega_{0z}^{2}u_{1}=-2D_{0}D_{1}u_{0}- \alpha_{2}u_{0}^{2}-\alpha_{7}q_{0}u_{0}-\alpha_{8}p_{0}u_{0}, $$
(21)
$$ \begin{aligned} D_{0}^{2}u_{2}+\omega_{0z}^{2}u_{2} &=-[-k_{z}\cos \left( \omega_{0z}T_{0}+\sigma T_{2}\right)+q_{0}^{2}\alpha_{4} u_{0}+p_{0}^{2}\alpha_{5}u_{0}+p_{0}q_{0}\alpha_{6}u_{0}+2\mu D_{0}u_{0} \\ &\quad+D_{1}^{2}u_{0}+2D_{0}D_{2}u_{0}+q_{0} \alpha_{21}u_{0}^{2}+p_{0}\alpha_{22}u_{0}^{2}+\alpha_{3}u_{0}^{3}+ 2D_{0}D_{1}u_{1} \\ &\quad+\alpha_{7}q_{0}u_{1}+\alpha_{8}p_{0}u_{1}+2\alpha_{2} u_{0}u_{1}+\alpha_{7}q_{1}u_{0}+ \alpha_{8}p_{1}u_{0}], \end{aligned} $$
(22)

where \(D_{i}=\partial/\partial T_{i}, \left( i=0,1,2\right).\)

Hence, we may solve \(u_{0}=A\left( T_{2}\right) \exp (i\omega_{0z}T_{0})+\bar{A}\left( T_{2}\right) \exp (-i\omega_{0z}T_{0})\) and \(u_{1}=\alpha_{2}[A^{2}\exp (2i\omega_{0z}T_{0})-6A\bar{A}+\bar{A}^{2}\exp (-2i\omega_{0z}T_{0})]/3\omega_{0z}^{2}\) from Eqs. (20) and (21) by eliminating the secular term. Similarly, from equations of the oscillations in x axis and y axis, which are similar to Eq. (4) but without the driven term, we may solve the variables p 0q 0p 1 and q 1 as

$$ p_{0}=C\left( T_{2}\right) \exp (i\omega_{0x}T_{0})+\bar{C}\left( T_{2}\right) \exp (-i\omega_{0x}T_{0}), $$
(23)
$$ q_{0}=B\left( T_{2}\right) \exp (i\omega_{0y}T_{0})+\bar{B}\left( T_{2}\right) \exp (-i\omega_{0y}T_{0}), $$
(24)
$$ p_{1}=\alpha_{2x}[C^{2}\exp(2i\omega_{0x}T_{0})- 6C\bar{C}+\bar{C}^{2}\exp (-2i\omega_{0x}T_{0})]/(3\omega_{0x}^{2}), $$
(25)
$$ q_{1}=\alpha_{2y}[B^{2}\exp (2i\omega_{0y}T_{0})-6B\bar{B}+\bar{B}^{2}\exp (-2i\omega_{0y}T_{0})]/(3\omega_{0y}^{2}), $$
(26)

where α 2x and α 2y correspond to the quadric nonlinearity of the ion motion equation in x and y directions, respectively. ω 0x /2π and ω 0y /2π represent the harmonic frequencies in x direction and y direction. \(A=\frac{1}{2}a\exp (i\beta ), B=\frac{1}{2}b\exp (i\varsigma)\) and \(C=\frac{1}{2}c\exp (i\eta),\) where \(a,b,c,\beta ,\varsigma\) and η are real functions of \(T_{2}, \beta ,\varsigma\) and η represent the phases of different dimensions. \(\bar{A}, \bar{B}\) and \(\bar{C}\) are conjugate terms of A, B and C. Substituting u 0 and u 1 into Eq. (22), we obtain an equation regarding the secular term, from which, in combination with Eqs. (2326) with the expressions of AB and C, we obtain

$$ -\frac{1}{2}k_{z}\sin \gamma +a\mu \omega_{0z}+\omega_{0z}\frac{\hbox{d}a}{\hbox{d}T_{2}} =0, $$
(27)
$$ \frac{1}{2}k_{z}\cos \gamma-\frac{3\alpha_{3}a^{3}}{8}- \frac{1}{4}\alpha_{4}ab^{2}-\frac{1}{4}\alpha_{5}ac^{2}+ \frac{5\alpha_{2}^{2}a^{3}}{12\omega_{0z}^{2}}+\frac{\alpha_{8} \alpha_{2x}ac^{2}}{4\omega_{0x}^{2}}+\frac{\alpha_{7}\alpha_{2y} ab^{2}}{4\omega_{0y}^{2}}+a\omega_{0z}\left(\sigma -\frac{\hbox{d}\gamma}{\hbox{d}T_{2}}\right) =0, $$
(28)

with γ = σ T 2 − β. We assume the steady-state motion corresponding to \(\frac{\hbox{d}\gamma}{\hbox{d}T_{2}}=\frac{\hbox{d}a}{\hbox{d}T_{2}}=0.\) So we have

$$ \left( \frac{3\alpha_{3}}{8}a^{3}-\frac{5\alpha_{2}^{2}}{12\omega_{0z}^{2}} a^{3}+\frac{\alpha_{4}}{4}ab^{2}+\frac{\alpha_{5}}{4}ac^{2}-\frac{ \alpha_{7}\alpha_{2y}}{4\omega_{0y}^{2}}ab^{2}-\frac{\alpha_{8} \alpha_{2z}}{ 4\omega_{0x}^{2}}ac^{2}-a\omega_{0z}\sigma \right) ^{2}+\left( a\omega_{0z}\mu \right) ^{2}=\frac{1}{4}k_{z}^{2}. $$
(29)

which is actually Eq. (5).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, HY., Xie, Y., Wan, W. et al. A complicated Duffing oscillator in the surface-electrode ion trap. Appl. Phys. B 114, 81–88 (2014). https://doi.org/10.1007/s00340-013-5541-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5541-z

Keywords

Navigation