Skip to main content
Log in

Wave mixing analysis in photorefractive quantum wells in the Franz–Keldysh geometry under a moving grating

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The photorefractive (PR) properties of semi-insulating GaAs/AlGaAs multiple quantum wells (MQWs) operating in the Franz–Keldysh geometry are modelled by solving the material equations including the nonlinear transport of hot electrons. This work studies the PR response of MQWs in a two-wave mixing geometry under a moving grating. Calculations were made under the small intensity modulation approximation, and the simulation results are compared with experimental data available in the literature. A reasonable qualitative agreement regarding most experimental characteristics was found. The results can be treated as a test of the correctness of the commonly used band transport model of PR behaviour in MQWs. Analytic solutions for the stationary and transient regimes under negligible diffusion are given. In addition, the conditions for the occurrence of a strong resonance predicted by the model are noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.D. Nolte, S. Iwamoto, K. Kuroda, in Photorefractive Materials and Their Applications 2: Materials, ed. by P. Günter, J.P. Huignard (Springer, Berlin, 2007)

  2. E. Garmire, IEEE J. Sel. Top. Quant. Electron. 6, 1094 (2000)

    Article  Google Scholar 

  3. Q. Wang, R.M. Brubaker, D.D. Nolte, M.R. Melloch, J. Opt. Soc. Am. B 9, 1626 (1992)

    Article  ADS  Google Scholar 

  4. D.D. Nolte, J. Appl. Phys. 85, 6259 (1999)

    Article  ADS  Google Scholar 

  5. D.D. Nolte, M.R. Melloch, in Photorefractive effects and Materials, ed. by D.D.Nolte (Kluwer, Dordrecht, 1995)

  6. A. Ziółkowski, J. Opt. A 9, 688 (2007)

    Article  ADS  Google Scholar 

  7. A. Partovi, A.M. Glass, T.H. Chiu, D.T.H. Liu, Opt. Lett. 18, 906 (1993)

    Article  ADS  Google Scholar 

  8. Y. Ding, R.M. Brubaker, D.D. Nolte, M.R. Melloch, A.M. Weiner, Opt. Lett. 22, 18 (1997)

    Google Scholar 

  9. I. Lahiri, L.J. Pyrak-Nolte, D.D. Nolte, M.R. Melloch, R.A. Kruger, G.D. Bacher, M.B. Klein, Appl. Phys. Lett. 73, 1041 (1998)

    Article  ADS  Google Scholar 

  10. T. Shimura, F. Grappin, P. Delaye, S. Iwamoto, Y. Arakawa, K. Kuroda, G. Roosen, Opt. Commun. 242, 7 (2004)

    Article  ADS  Google Scholar 

  11. R. Jones, S.C.W. Hyde, M.J. Lynn, N.P. Barry, J.C. Dainty, P.M.W. French, K.M. Kwolek, D.D. Nolte, M.R. Melloch, Appl. Phys. Lett. 69, 1837 (1996)

    Article  ADS  Google Scholar 

  12. P. Yu, M. Mustata, J.J. Turek, P.M.W. French, M.R. Melloch, D.D. Nolte, Appl. Phys. Lett. 83, 575 (2003)

    Article  ADS  Google Scholar 

  13. L.F. Magaňa, F. Agulló-López, M. Carrascosa, J. Opt. Soc. Am. B 11, 1651 (1994)

    Article  ADS  Google Scholar 

  14. Q. Wang, R.M. Brubaker, D.D. Nolte, J. Opt. Soc. Am. B 9, 1773 (1994)

    Article  ADS  Google Scholar 

  15. R.M. Brubaker, Q.N. Wang, D.D. Nolte, M.R. Melloch, Phys. Rev. Lett. 77, 4249 (1996)

    Article  ADS  Google Scholar 

  16. S. Balasubramanian, I. Lahiri, Y. Ding, M.R. Melloch, D.D. Nolte, Appl. Phys. B 68, 863 (1999)

    Article  ADS  Google Scholar 

  17. Q.N. Wang, D.D. Nolte, M.R. Melloch, Appl. Phys. Lett. 59, 256 (1991)

    Article  ADS  Google Scholar 

  18. D.D. Nolte, D.H. Olson, G.E. Doran, W.H. Knox, A.M. Glass, J. Opt. Soc. Am. B 7, 2217 (1990)

    Article  ADS  Google Scholar 

  19. D.D. Nolte, T. Cubel, L.J. Pyrak-Nolte, M.R. Melloch, J. Opt. Soc. Am. B 18, 195 (2001)

    Article  ADS  Google Scholar 

  20. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993)

    Google Scholar 

  21. D.D. Nolte, Q.N. Wang, M.R. Melloch, Appl. Phys. Lett. 58, 2067 (1991)

    Article  ADS  Google Scholar 

  22. S.M. Sze, Physics of Semiconductors Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  23. K. Seeger, in Semiconductors Physics, 5th edn. (Springer, Berlin, 1991)

  24. G.C. Valley, H. Rajbenbach, H.J. von Bardeleben, Appl. Phys. Lett. 56, 364 (1990)

    Article  ADS  Google Scholar 

  25. A. Partovi, E.M. Garmire, J. Appl. Phys. 69, 6885 (1991)

    Article  ADS  Google Scholar 

  26. K. Walsh, A.K. Powell, C. Stace, T.J. Hall, J. Opt. Soc. B 7, 288 (1990)

    Article  ADS  Google Scholar 

  27. D.D. Nolte, S. Balasubramanian, M.R. Melloch, Opt. Mater. 18, 199 (2001)

    Article  ADS  Google Scholar 

  28. M. Wichtowski, E. Weinert-Raczka, Opt. Commun. 281, 1233 (2008)

    Article  ADS  Google Scholar 

  29. M. Wichtowski, A. Ziółkowski, Opt. Commun. 300, 257 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Center for Science under the project awarded by Decision Number DEC-2011/01/B/ST7/06234.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Wichtowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wichtowski, M. Wave mixing analysis in photorefractive quantum wells in the Franz–Keldysh geometry under a moving grating. Appl. Phys. B 115, 505–516 (2014). https://doi.org/10.1007/s00340-013-5631-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5631-y

Keywords

Navigation