Skip to main content

Advertisement

Log in

Modeling laser-induced incandescence of soot: a new approach based on the use of inverse techniques

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Two LII models derived from the literature have been tested to simulate signals provided in a recently published extensive set of experimental data collected in a non-smoking laminar diffusion flame of ethylene. The first model classically accounts for particle heating by absorption and cooling by radiation, sublimation and conduction. The second one also integrates an alternative absorption term that accounts for saturation of the linear, single-photon and multi-photon absorption leading to C2-photodesorption at high fluence, a heating flux attributable to oxidation and a cooling process based on thermionic emission. Obtained results illustrate that both models fail to reproduce the LII signals experimentally monitored on a wide range of fluences (up to ~1 J cm−2) regardless of the value implemented for the main parameters involved in the energy- and mass-balance equations. We therefore originally proposed a new modeling approach based on the use of inverse techniques to gain information about the specific terms that should be integrated into the calculation. The inverse procedure allows inferring the temporal evolution of the soot diameter as well as the temporal and fluence dependence of additional energy rates that have to be considered to fulfill the particle energy and mass balances while providing a complete fit with experimental data. Conclusions issued from the present work indicate that modeling soot LII using only absorption, radiation, conduction and sublimation rates (as these fluxes are generally expressed and computed in the literature) is inadequate to correctly simulate the soot heating and cooling mechanisms over a wide range of fluences. The inverse modeling procedure also gave insights concerning the relevance of integrating photolytic mechanisms such as multi-photon absorption and carbon cluster photodesorption as previously proposed by Michelsen. Additional calculations performed using a new model formulation integrating such processes finally led to predictions merging on a single curve with experimental data. Additional works should be undertaken, however, to complete this first-approach analysis especially to address the large uncertainties existing in the input parameters and equations accounting for photolytic processes that are likely to significantly impact soot LII.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. C.A. Pope III, R.T. Burnett, G.D. Thurston, M.J. Thun, E.E. Calle, D. Krewski, J.J. Godleski, Circulation 109, 71 (2004)

    Article  Google Scholar 

  2. M.Z. Jacobson, Nature 409, 695 (2001)

    Article  ADS  Google Scholar 

  3. R.F. Service, Science 319, 1745 (2008)

    Article  Google Scholar 

  4. H. Richter, J.B. Howard, Prog. Eng. Combust. Sci. 26, 565 (2000)

    Article  Google Scholar 

  5. C.S. McEnally, L.D. Pfefferle, B. Atakan, K. Kohse-Höinghaus, Proc. Eng. Combust. Sci. 32, 247 (2006)

    Article  Google Scholar 

  6. H. Wang, Proc. Combust. Inst. 33, 41 (2011)

    Article  Google Scholar 

  7. P. Desgroux, X. Mercier, K.A. Thomson, Proc. Combust. Inst. 34, 1713 (2013)

    Article  Google Scholar 

  8. C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83, 333 (2006)

    Article  ADS  Google Scholar 

  9. L.A. Melton, Appl. Opt. 23, 2201 (1984)

    Article  ADS  Google Scholar 

  10. N.P. Tait, D.A. Greenhalgh, Berichte der Bunsengesellschaft fuer Physikalische Chemie 97, 1619 (1993)

    Article  Google Scholar 

  11. R.L. Vander Wal, K.J. Weiland, Appl. Phys. B 59, 445 (1994)

    Article  ADS  Google Scholar 

  12. T. Ni, J.A. Pinson, S. Gupta, R.J. Santoro, Appl. Opt. 34, 7083 (1995)

    Article  ADS  Google Scholar 

  13. C.R. Shaddix, K.C. Smyth, Combust. Flame 107, 418 (1996)

    Article  Google Scholar 

  14. R.L. Vander, Wal. Proc. Combust. Inst. 27, 59 (1998)

    Article  Google Scholar 

  15. C. Schoemaecker Moreau, E. Therssen, X. Mercier, J.F. Pauwels, P. Desgroux, Appl. Phys. B 78, 485 (2004)

    Article  ADS  Google Scholar 

  16. P. Desgroux, X. Mercier, B. Lefort, R. Lemaire, E. Therssen, J.F. Pauwels, Combust. Flame 155, 289 (2008)

    Article  Google Scholar 

  17. R.L. Vander Wal, T.M. Ticich, A.B. Stephens, Combust. Flame 116, 291 (1999)

    Article  Google Scholar 

  18. H. Bladh, J. Johnsson, P.-E. Bengtsson, Appl. Phys. B 96, 645 (2009)

    Article  ADS  Google Scholar 

  19. H. Bladh, J. Johnsson, N.-E. Olofsson, A. Bohlin, P.-E. Bengtsson, Proc. Combust. Inst. 33, 641 (2011)

    Article  Google Scholar 

  20. S. Will, S. Schraml, A. Leipertz, Opt. Lett. 20, 2342 (1995)

    Article  ADS  Google Scholar 

  21. S. Will, S. Schraml, K. Bader, A. Leipertz, Appl. Opt. 37, 5647 (1998)

    Article  ADS  Google Scholar 

  22. H.A. Michelsen, P.O. Witze, D. Kayes, S. Hochgreb, Appl. Opt. 42, 5577 (2003)

    Article  ADS  Google Scholar 

  23. R. Hadef, K.P. Geigle, W. Meier, M. Aigner, Int. J. Thermal Sci. 49, 1457 (2010)

    Article  Google Scholar 

  24. J. Reimann, S.A. Kuhlmann, S. Will, Appl. Phys. B 96, 583 (2009)

    Article  ADS  Google Scholar 

  25. E. Therssen, Y. Bouvier, C. Schoemaecker Moreau, X. Mercier, P. Desgroux, M. Ziskind, C. Focsa, Appl. Phys. B 89, 417 (2007)

    Article  ADS  Google Scholar 

  26. H.A. Michelsen, P.E. Schrader, F. Goulay, Carbon 48, 2175 (2010)

    Article  Google Scholar 

  27. H.A. Michelsen, P.E. Schrader, F. Goulay, Carbon 50, 740 (2012)

    Article  Google Scholar 

  28. J. Yon, R. Lemaire, E. Therssen, P. Desgroux, A. Coppalle, K.F. Ren, Appl. Phys. B 104, 253 (2011)

    Article  ADS  Google Scholar 

  29. S. Bejaoui, R. Lemaire, E. Therssen, P. Desgroux, Appl. Phys. B 116, 313 (2014)

    Article  ADS  Google Scholar 

  30. D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136, 180 (2004)

    Article  Google Scholar 

  31. X. Lopez-Yglesias, P.E. Schrader, H.A. Michelsen, J. Aerosol Sci. 75, 43 (2014)

    Article  Google Scholar 

  32. H.A. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaïm-Rousselle, C. Schulz, R. Stirn, B. Tribalet, R. Suntz, Appl. Phys. B 87, 503 (2007)

    Article  ADS  Google Scholar 

  33. H.A. Michelsen, J. Chem. Phys. 118, 7012 (2003)

    Article  ADS  Google Scholar 

  34. G.J. Smallwood, D.R. Snelling, F. Liu, Ö.L. Gülder, J. Heat Transfer 123, 814 (2001)

    Article  Google Scholar 

  35. F. Liu, K.J. Daun, D.R. Snelling, G.J. Smallwood, Appl. Phys. B 83, 355 (2006)

    Article  ADS  Google Scholar 

  36. H. Bladh, J. Johnsson, P.-E. Bengtsson, Appl. Phys. B 90, 109 (2008)

    Article  ADS  Google Scholar 

  37. H. Bladh, P.-E. Bengtsson, Appl. Phys. B 78, 241 (2004)

    Article  ADS  Google Scholar 

  38. D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Proceeding of NHTC 2000, 34th Natural Heat Transfer Conference, Pittsburgh, PA, 20–22 August 2000

  39. H. Bladh, P.-E. Bengtsson, J. Delhay, Y. Bouvier, E. Therssen, P. Desgroux, Appl. Phys. B 83, 423 (2006)

    Article  ADS  Google Scholar 

  40. D.J. Krajnovich, J. Chem. Phys. 102, 726 (1995)

    Article  ADS  Google Scholar 

  41. C.B. Stipe, J.H. Choi, D. Lucas, C.P. Koshland, R.F. Sawyer, J. Nanopart. Res. 6, 467 (2004)

    Article  Google Scholar 

  42. H.A. Michelsen, M.A. Linne, B.F. Kock, M. Hofmann, B. Tribalet, C. Schulz, Appl. Phys. B 93, 645 (2008)

    Article  ADS  Google Scholar 

  43. H.A. Michelsen, Appl. Phys. B 94, 103 (2009)

    Article  ADS  Google Scholar 

  44. F. Goulay, P.E. Schrader, X. López-Yglesias, H.A. Michelsen, Appl. Phys. B 112, 287 (2013)

    Article  ADS  Google Scholar 

  45. D.L. Hofeldt, SAE Technical Paper 930079 (1993). doi:10.4271/930079

  46. F. Liu, D.R. Snelling, Appl. Phys. B 89, 115 (2007)

    Article  ADS  Google Scholar 

  47. L.E. Fried, W.M. Howard, Phys. Rev. B 61, 8734 (2000)

    Article  ADS  Google Scholar 

  48. T.L. Farias, Ü.Ö. Köylü, M.G. Carvalho, Appl. Opt. 35, 6560 (1996)

    Article  ADS  Google Scholar 

  49. C.F. Bohren, D.R. Huffman, Absorption and scattering of light by small particles, ISBN 978-0-471-29340-8, Wiley-VCH (2004)

  50. D.R. Snelling, K.A. Thomson, G.J. Smallwood, Ö.L. Gülder, E.J. Weckman, R.A. Fraser, AIAA J. 40, 1789 (2002)

    Article  ADS  Google Scholar 

  51. W.H. Dalzell, A.F. Sarofim, J. Heat Transfer 91, 100 (1969)

    Article  Google Scholar 

  52. S.C. Lee, C.L. Tien, Proc. Combust. Inst. 18, 1159 (1981)

    Article  Google Scholar 

  53. Z.G. Habib, P. Vervisch, Combust. Sci. Technol. 59, 261 (1988)

    Article  Google Scholar 

  54. H. Chang, T.T. Charalampopoulos, Proc. R. Soc. Lond. A: Mathematical Phys. Sci. 430, 577 (1990)

    Article  Google Scholar 

  55. Ü.Ö. Köylü, G.M. Faeth, J. Heat Transfer 118, 415 (1996)

    Article  Google Scholar 

  56. Ü.Ö. Köylü, Combust. Flame 109, 488 (1996)

    Article  Google Scholar 

  57. A.C. Eckbreth, J. Appl. Phys. 48, 4473 (1977)

    Article  ADS  Google Scholar 

  58. E. Vietzke, A. Refke, V. Philipps, M. Hennes, J. Nucl. Mater. 241–243, 810 (1997)

    Article  Google Scholar 

  59. V.I. Bukatyi, E.P. Zhdanov, A.M. Shaiduk, Combust. Explo. Shock. 18, 309 (1982)

    Article  Google Scholar 

  60. V.I. Bukatyi, I.A. Sutorikhin, A.M. Shaiduk, Combust. Explo. Shock. 19, 69 (1983)

    Article  Google Scholar 

  61. V.I. Bukatyi, V.N. Krasnopevtsev, A.M. Shaiduk, Explo. Shock. 24, 37 (1988)

    Article  Google Scholar 

  62. B.J. McCoy, C.Y. Cha, Chem. Eng. Sci. 29, 381 (1974)

    Article  Google Scholar 

  63. M.W. Chase Jr, C.A. Davies, J.R. Downey Jr, D.J. Frurip, R.A. McDonald, A.N. Syverud, J. Phys. Chem. Ref. Data 14, 1 (1985)

    Article  Google Scholar 

  64. K.J. Daun, Int. J. Heat Mass Transfer 52, 5081 (2009)

    Article  MATH  Google Scholar 

  65. J. Nagle, R.F. Strickland-constable, Proceeding in Fifth Conference Carbon, 154 (1962)

  66. J.R. Walls, R.F. Strickland-Constable, Carbon 1, 333 (1964)

    Article  Google Scholar 

  67. R. Hiers, J. thermophysics Heat Transfer 11, 232 (1997)

    Article  Google Scholar 

  68. K.R. McManus, J.H. Frank, M.G. Allen, W.T. Rawlins, Proc. AIAA 36, 98 (1998)

  69. E. Hairer, G. Wanner, Solving ordinary differential equations II: stiff and differential-algebraic problems, Springer Series in Computational Mathematics, 144, Springer, Berlin Heidelberg, ISBN: 978-642-05220-0 (1996)

  70. H. Bladh, On the use of laser-induced incandescence for soot diagnostics, PhD Thesis, Lund University, Lund Reports on Combustion Physics, LRCP 119, Lund, Sweden, ISBN 978-91-628-7142-0 (2007)

  71. L.O. Jay, SIAM J. Numer. Anal. 38, 1369 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  72. M. Mobtil, R. Lemaire, Fifth International Workshop on Laser-induced Incandescence, Vol. 865, paper no. 16, Ed. CEUR Workshop Proceedings, ISSN: 1613-0073 (2012)

  73. M. Mobtil, R. Lemaire, 34th International symposium on combustion (Warsaw University of Technology, Warsaw, 2012)

    Google Scholar 

  74. R. Lemaire, M. Mobtil, Rec. Prog. Gen. Proc., 104, Ed. SFGP, Paris, France, ISBN: 978-910239-78-7 (2013)

  75. A. Kirsch, An introduction to the mathematical theory of inverse problems, Applied Mathematical Sciences, 120, Springer-Verlag, New York, ISBN 978-1-4419-8473-9 (2011)

  76. J.V. Beck, B. Blackwell, C.R. St. Clair: inverse heat conduction: Ill posed problems, Wiley, New York, ISBN 978-0-471-08319-1 (1985)

  77. O.M. Alifanov, Inverse heat transfer problems, international series in heat and mass transfer, Springer, Berlin Heidelberg, ISBN: 978-3-642-76438-7 (1994)

  78. C.T. Kelley, Iterative methods for optimization, Frontiers in Applied Mathematics, 18, Society for Industrial and Applied Mathematics, ISBN: 978-0-898714-33-3 (1999)

  79. M.N. Özisik, H.R.B. Orlande, Inverse heat transfer, fundamentals and applications, Taylor & Francis, New York, ISBN 1-56032-838-X (2000)

  80. S.S. Rao, Engineering optimization, theory and practice, 4th edition, Wiley, Hoboken, ISBN 978-0-470-18352-6 (2009)

  81. W.C. Davidon, SIAM J. Optim. 1, 1 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  82. L. Lukšan, E. Spedicato, J. Comput. Appl. Math. 124, 61 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  83. F. Kowsary, A. Behbahaninia, A. Pourshaghaghy, Int. Commun. Heat Mass Transfer 33, 800 (2006)

    Article  Google Scholar 

  84. Z.Z. Zhang, D.H. Cao, J.P. Zeng, Appl. Math. Lett. 17, 437 (2004)

    Article  MathSciNet  Google Scholar 

  85. C.M. Murea, Comput. Math Appl. 49, 171 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  86. C.R. Vogel, Computational methods for inverse problems, frontiers in applied mathematics, society for industrial and applied mathematics, ISBN: 978-0-89871-550-7 (2002)

  87. A.G. Ramm, Inverse problems, mathematical and analytical techniques with applications to engineering, Springer, New York, ISBN: 978-0321070746 (2005)

  88. H.A. Michelsen, A.V. Tivanski, M.K. Gilles, L.H. Van Poppel, M.A. Dansson, P.R. Buseck, Appl. Opt. 46, 959 (2007)

    Article  ADS  Google Scholar 

  89. F. Gouley, P.E. Schrader, L. Nemes, M.A. Dansson, H.A. Michelsen, Proc. Comb. Inst. 32, 963 (2009)

    Article  Google Scholar 

  90. J. Yon, F. Liu, A. Bescond, C. Caumont-Prim, C. Rozé, F.X. Ouf, A. Coppalle, J. Quant. Spectrosc. Radiat. Transf. 133, 374 (2014)

    Article  ADS  Google Scholar 

  91. R.P. Bambha, M.A. Dansson, P.E. Schrader, H.A. Michelsen, Appl. Phys. B 112, 343 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This study was supported by ARMINES, the French ANR (Agence Nationale pour la Recherche) and the Carnot M.I.N.E.S. Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Lemaire.

Appendices

Appendix 1: Algorithm of the inverse calculation procedure

The algorithm describing the iterative process implemented to solve the inverse problem can be summarized as follows:

Step 1: Start with an initial guess for \(\left( {D_{k = 0} = \left[ {D_{1} , D_{2} , \ldots ,D_{i} , \ldots , D_{{N_{t} }} } \right]^{T} } \right)\) and with a (N t  × N t ) positive-definite symmetric matrix H κ=0. Usually H κ=0 is taken as the identity matrix I. For D k=0, the solution obtained using one of the models implemented in Sect. 2 is considered.

Step 2: Solve the direct problem described by Eq. 29 to obtain the time-dependent temperature and compute the LII signal based on Eq. 28.

Step 3: Compute the gradient of the cost function using Eq. 38, the direction of descent based on Eq. 33 and the sensitivity coefficients for each component of the unknown vectors \(\left( {D_{k} = \left[ {D_{1} , D_{2} , \ldots ,D_{i} , \ldots , D_{{N_{t} }} } \right]^{T} } \right)\) using the formulation proposed in Eq. 40.

Step 4: Find the optimal step size η κ by solving the iterative inexact line search problem based on the Armijo rule given by Eq. 41.

Step 5: Calculate the new estimation for the diameter D κ+1 using Eq. 31.

Step 6: Test the new estimation for optimality (stopping criterion). If D κ+1 is optimal, terminate the iteration process. Otherwise, go to next step.

Step 7: Update H κ+1 based on the BFGS formula (Eq. 37).

Step 8: Set the new iteration number κ = κ + 1 and go to step 2.

Appendix 2: Nomenclature

B λ1

Empirically determined saturation coefficient for linear absorption

(J cm−2)

B λn

Empirically determined saturation coefficient for multi-photon absorption

(J cm−2)

c

Speed of light

(cm s−1)

c s

Specific heat of solid carbon (graphite)

(J g−1 K−1)

C p

Molar heat capacity for ambient gases at constant pressure

(J mol−1 K−1)

C v

Molar heat capacity for ambient gases at constant volume

(J mol−1 K−1)

C CO p

Molar heat capacity of CO

(J mol−1 K−1)

C abs

Absorption cross section for soot particles in the Rayleigh regime

(cm2)

D

Primary particle diameter

(cm)

D eff

Total effective diffusion constant

(cm2 s−1)

d

Direction of descent

(–)

E(m)

Dimensionless refractive index function

(–)

F

Laser fluence

(J cm−2)

f

Dimensionless Eucken correction to the thermal conductivity of polyatomic gas

(–)

f 1

Empirical scaling factor for linear absorption

(–)

G

Geometry-dependent heat transfer factor

(–)

H

Approximation of the Hessian matrix

(–)

h

Planck constant

(J s)

I

Identity matrix

(–)

i

Time step index

(–)

k B

Boltzmann constant

(J K−1)

k p

Boltzmann constant in effective pressure units

(bar cm3 K−1)

k ox

Overall rate constant for oxidation

(s−1 cm−2)

k λn

Rate constant for removal of C 2 by photodesorption

(s−1)

Kn

Knudsen number

(–)

L c

Characteristic length

(cm)

M

Particle mass

(g)

m e

Mass of an electron

(J s2 cm−2)

n

Estimated number of 532-nm photons absorbed to photodesorb C 2

(–)

n g

Number density of gas molecules

(cm−3)

N A

Avogadro constant

(mol−1)

N ss

Density of carbon atoms on the surface of the particle

(cm−2)

N t

Total number of discrete time steps

(–)

p 0

Ambient pressure

(bar)

p v

Average partial pressure of sublimed carbon species

(bar)

P ref

Reference pressure

(bar)

\(P_{\text{eq}}^{{C_{j} }}\)

Thermal equilibrium partial pressure of C j

(bar)

\(P_{\text{sat}}^{{C_{j} }}\)

Saturation partial pressure of C j

(bar)

\(P_{\text{surf}}^{{C_{j} }}\)

Partial pressure of C j at the particle surface

(bar)

P λn

Effective pressure calculated from the rate of photodesorption of C 2

(bar)

q

Probe laser irradiance

(W cm−2)

q exp

Experimental temporal profile of the laser

(Arbitrary unit)

R

Universal gas constant

(J mol−1 K−1)

R m

Universal gas constant in effective mass units

(g cm2 mol−1 K−1 s−2)

R p

Universal gas constant in effective pressure units

(bar cm3 mol−1 K−1)

SLII

Calculated LII signal

(Arbitrary unit)

SLII*

Measured LII signal

(Arbitrary unit)

t

Time

(s)

t f

Final measurement time

(s)

t l

Laser pulse duration

(s)

T

Particle temperature

(K)

T g

Ambient gas temperature

(K)

\(T_{\text{ref}}^{{C_{j} }}\)

Reference temperature for C j

(K)

W 1

Average molecular weight of atomic carbon

(g mol−1)

W a

Average molecular weight of air

(g mol−1)

W v

Average molecular weight of sublimed carbon species

(g mol−1)

W j

Molecular weight of C j (j × 12.011)

(g mol−1)

\({\mathcal{J}}\)

Objective (or cost) function

(Arbitrary unit)

\({\mathcal{R}}_{\lambda \det }\)

Spectral characteristics of the detection system

(Arbitrary unit)

\({\mathcal{X}}\)

Sensitivity coefficient

(Arbitrary unit)

α j

Mass accommodation coefficient of vaporized species C j

(–)

α M

Species-independent mass accommodation coefficient of vaporized carbon clusters

(–)

α T

Thermal accommodation coefficient of ambient gases with the surface

(–)

β

Scaling factor for emissivity

(–)

γ

Heat capacity ratio for the ambient gas surrounding the particles

(–)

ΔH j

Enthalpy of formation of carbon vapor species C j

(J mol−1)

ΔH v

Average enthalpy of formation of sublimed carbon species C j

(J mol−1)

ΔH ox

Enthalpy of reaction for 2C + O2 → 2CO

(J mol−1)

ΔH λn

Enthalpy required to photodesorb C 2

(J mol−1)

Δλ det

Spectral range of the detection system

(cm)

ɛ λ

Emissivity at wavelength λ

(–)

ϵ

Real number used to calculate the sensitivity coefficient

(–)

η

Search step size

(–)

κ

Iteration index

(–)

κ a

Thermal conductivity of the surrounding gases

(W cm−1 K−1)

λ

Wavelength

(cm)

λ l

Laser wavelength

(cm)

λ g

Mean free path of gas molecules

(cm)

ξ

Dispersion exponent

(–)

ρ s

Density of graphite

(g cm−3)

σ

Average molecular cross section for ambient gases

(cm2)

\(\bar{\sigma }\)

Average molecular cross section for sublimed species

(cm2)

σ err

Standard deviation of the measurement errors

(Arbitrary unit)

σ j

Molecular cross section for sublimed species C j

(cm2)

σ λn

Empirically determined multi-photon absorption cross section for photodesorption of C 2

(Cm2n−1 J1−n)

ϕ

Work function

(J)

ϕ abs

Rate of energy gained by laser absorption

(W)

ϕ cnd

Rate of energy lost by conduction to the surrounding gases

(W)

ϕ int

Rate of change of the internal energy of the particle

(W)

ϕ loss

Additional rate of energy lost by the particle (inferred from the inverse model)

(W)

ϕ ox

Rate energy gained by oxidation of the particle

(W)

ϕ rad

Rate of energy lost by radiative emission

(W)

ϕ source

Additional rate of energy gained by the particle (inferred from the inverse model)

(W)

ϕ sub

Energy loss rate due to the sublimation mechanism

(W)

ϕ th

Energy loss rate by thermionic emission

(W)

ω

Tolerance used in the Armijo rule

(–)

Gradient

(–)

2

Hessian matrix

(–)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemaire, R., Mobtil, M. Modeling laser-induced incandescence of soot: a new approach based on the use of inverse techniques. Appl. Phys. B 119, 577–606 (2015). https://doi.org/10.1007/s00340-015-6032-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6032-1

Keywords

Navigation