Skip to main content
Log in

Inoculation of Rhizobium Alleviates Salinity Stress Through Modulation of Growth Characteristics, Physiological and Biochemical Attributes, Stomatal Activities and Antioxidant Defence in Cicer arietinum L.

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Rhizobium is a plant growth-promoting bacteria, generally involved in nitrogen fixation and promotes growth in plants under abiotic-stressed conditions such as salinity. The present study investigates the significance of Rhizobium application in alleviation of salt stress in chickpea by increasing cell viability, stomatal movement, photosynthetic pigment and protein content, nitrate reductase, carbonic anhydrase as well as enzymatic and non-enzymatic antioxidant activities. Healthy and viable seeds were inoculated with Rhizobium before sowing. Salt treatment was given in terms of NaCl (50 or 150 mM) to the plants through soil at 20 days after sowing. High NaCl level (150 mM) reduced the growth attributes, pigment as well as soluble protein content, altered stomatal behaviour, reduced cell viability and enhanced the formation of superoxide radicals and other reactive oxygen species in foliage. Moreover, Rhizobium inoculation improved the mineral uptake, reduced electrolyte leakage which directly influences photosynthesis and improved yield attributes in the salt-treated chickpea plants. Therefore, Rhizobium could be applied to chickpea plants for efficient growth under salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

PGPB:

Plant growth-promoting bacteria

ACC:

Aminocyclopropane-1-carboxylate

DDA:

Double distilled water

IARI:

Indian agriculture research institute

CA:

Carbonic anhydrase

NR:

Nitrate reductase

TCA:

Trichloroacetic acid

TBA:

Thiobarbituric acid

EDTA:

Ethylenediaminetetraacetic acid

PMSF:

Phenylmethanesulfonylflouride

SOD:

Superoxide dismutase

POD:

Peroxidase

CAT:

Catalase

NBT:

Nitro-blue tetrazolium

OD:

Optical density

SEM:

Scanning electron microscope

ANOVA:

Analysis of variance

SPSS:

Statistical package for the social sciences

MDA:

Malondialdehyde

DAS:

Days after sowing

EL:

Electrolyte leakage

ABA:

Abscisic acid

References

  • Abd el Baki GK, Siefritz F, Man HM, Welner H, Kaldenhoff R, Kaiser WM (2000) Nitrate reductase in Zea mays L. under salinity. Plant Cell Environ 23:515–521

    Article  CAS  Google Scholar 

  • Abd-Allaa MH, Nafadya NA, Bashandya SR, Hassan AA (2019) Mitigation of effect of salt stress on the nodulation, nitrogen fixation and growth of chickpea (Cicer arietinum L.) by triple microbial inoculation. Rhizosphere 10:2452–2198

    Google Scholar 

  • Abdul Qados AMS (2011) Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J Saudi Soc Agric Sci 10:7–15

    CAS  Google Scholar 

  • Abiala MA, Popoola OO, Olawuyi OJ, Oyelude OJ, Akanmu AO, Killani AS, Osonubi O, Odebode AC (2013) Harnessing the potentials of vesicular Arbuscular Mycorrhizal (VAM) fungi to plant growth – a review. Int J Pure Appl Sci Technol 14:61–79

    CAS  Google Scholar 

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7:18

    Article  CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Hakeem KR, Kumar A, Ashraf M, Akram NA (2012) Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). Afr J Biotechnol 11:2694–2703

    CAS  Google Scholar 

  • Ahmad M, Zahir ZA, Khalid M, Nazli F, Arshad M (2013a) Efficacy of Rhizobium and Pseudomonasstrains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields. Plant Physiol Biochem 63:170–176

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Zahir ZA, Nazli F, Akram F, Arshad M, Khalid M (2013b) Effectiveness of halo-tolerant, auxin producing Pseudomonas and rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.). Braz J Microbiol 44:1341–1348

    Article  PubMed  Google Scholar 

  • Amtmann A, Sanders D (1998) Mechanisms of NaCl uptake by plant cells. Adv Bot Res 29:75–112

    Article  Google Scholar 

  • Aragao MEF, Guedes MM, Otoch MLO et al (2005) Differential responses of ribulose- 1,5- bisphosphate carboxylase/oxygenase activities of two Vigna unguiculata cultivars to salt stress. Braz J Plant Physiol 17:207–212

    Article  Google Scholar 

  • AzevedoNeto AD, Prisco JT, Eneas-Filho J, de Lacerda CF, Silva JV, Costa PHA, Filho EG (2004) Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes. Braz J Plant Physiol 16:31–38

    Article  Google Scholar 

  • Azooz MM, Youssef AM, Ahmad P (2011) Evaluation of salicylic acid (SA) application on growth, osmotic solutes and antioxidant enzyme activities on broad bean seedlings grown under diluted seawater. Int J Plant Physiol Biochem 3:253–264

    CAS  Google Scholar 

  • Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Benidire L, Lahrouni M, El Khalloufi F, Gottfert M, Oufdou K (2017) Effects of Rhizobium leguminosarum inoculation on growth, nitrogen uptake and mineral assimilation in Vicia faba plants under salinity. J Agric Sci Technol 19:889–901

    Google Scholar 

  • Bradford MM (1976) A rapid sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Horst JH (1991) Effects of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468

    Article  CAS  Google Scholar 

  • Candrabarata R (2011) Soil chemistry: ion absorption mechanism in saline soil. Faculty of Agriculture, Universitas Jenderal Soedirman, Purwokerto

  • Debouba M, Gouia H, Suzuki A, Ghorbel MH (2006) NaCl stress effects on enzymes involved in nitrogen assimilation pathway in tomato Lycopersiconesculentum seedlings. J Plant Physiol 163:1247–1258

    Article  CAS  PubMed  Google Scholar 

  • Debouba M, Maaroudi-Dghimi H, Suzuki A, Ghorbel MH, Gouia H (2007) Changes in growth and activity of enzymes involved in nitrate reductase and ammonium assimilation in tomato seedlings in response to NaCl stress. Ann Bot 99:1143–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan L, Sebastian J, Dinneny JR (2015) Salt-stress regulation of root system growth and architecture in Arabidopsis seedlings. Methods Mol Biol 1242:105–122

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi RS, Randhawav NS (1974) Evaluation of rapid test for the hidden hunger of zinc in plants. Plant Soil 40:445–451

    Article  CAS  Google Scholar 

  • Egamberdieva D, Jabborova D, Berg G (2016) Synergistic interactions between Bradyrhizobium japonicum and the endophyteStenotrophomonasrhizophila and their effects on growth, and nodulation of soybean under salt stress. Plant Soil 405:35–45

    Article  CAS  Google Scholar 

  • Etesami H, Beattie GA (2018) Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front Microbiol 9:148

    Article  PubMed  PubMed Central  Google Scholar 

  • Falkenmark M (2013) Growing water scarcity in agriculture: future challenge to global water security. Phil Trans R Soc A 371:20120410

    Article  PubMed  Google Scholar 

  • Flores P, Botella MA, Cerda A, Martinez V (2004) Influence of nitrate level on nitrate assimilation in tomato (Lycopersiconesculentum) plants under saline stress. Can J Bot 82:207–213

    Article  Google Scholar 

  • Franzini VI, Azcón R, Méndes FL, Aroca R (2013) Different interaction among Glomus and rhizobium species on Phaseolus vulgaris and Zea mays plant growth, physiology and symbiotic development under moderate drought stress conditions. Plant Growth Regul 70:265–273

    Article  CAS  Google Scholar 

  • Franzini VI, Azcón R, Ruiz-Lozano JM, Aroca R (2019) Rhizobial symbiosis modifies root hydraulic properties in bean plants under non-stressed and salinity-stressed conditions. Planta 249:1207–1215

    Article  CAS  PubMed  Google Scholar 

  • Fukami J, de la Osa C, Ollero FJ, Megías M, Hungria M (2018) Co-inoculation of maize with Azospirillum brasilense and rhizobium tropici as a strategy to mitigate salinity stress. Funct Plant Biol 45:328–339

    Article  CAS  PubMed  Google Scholar 

  • Ghoulam C, Foursy A, Fares K (2002) Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ Exp Bot 47:39–50

    Article  CAS  Google Scholar 

  • Gupta B, Huang BR (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom 2014:701596

    Google Scholar 

  • Hahm MS, Son JS, Hwang YJ, Kwon DK, Ghim SY (2017) Alleviation of salt stress in pepper (Capsicum annum L.) plants by plant growth-promoting rhizobacteria. J Microbiol Biotechnol 27:1790–1797

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Oku H, Nahar K, Bhuyan MB, Al Mahmud J, Baluska F, Fujita M (2018) Nitric oxide-induced salt stress tolerance in plants: ROS metabolism, signaling, and molecular interactions. Plant Biotechnol Rep 12:77–92

    Article  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hmaeid N, Metoui O, Wali M, Zorrig W, Abdelly C (2014) Comparative effects of Rhizobacteria in promoting growth of Hordeummaritimum L. plants under salt stress. J Plant Biol Res 3:37–50

    Google Scholar 

  • Hu H, Boisson-Dernier A, Israelsson-Nordström M, Böhmer M, Xue S, Ries A, Godoski J, Kuhn JM, Schroeder JI (2010) Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nat Cell Biol 12:87–93

    Article  CAS  PubMed  Google Scholar 

  • Islam S, Zaid A, Mohammad F (2020) Role of triacontanol in counteracting the ill effects of salinity in plants: a review. J Plant Growth Regul. https://doi.org/10.1007/s00344-020-10064-w

  • Jaworski EG (1971) Nitrate reductase assay in intact plant tissues. Biochem Biophys Res Commun 43:1274–1279

    Article  CAS  PubMed  Google Scholar 

  • Jouyban Z (2012) The effects of salt stress on plant growth. Technol J Eng Appl Sci 2:7–10

    CAS  Google Scholar 

  • Kang SM, Khan AL, Waqs M, You YH, Kim JH, Kim GK, Hamayun M, Lee IJ (2014) Plant growth promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9:673–682

    Article  CAS  Google Scholar 

  • Kapoor K, Srivastava A (2010) Assessment of salinity tolerance of Vinga mungo var. Pu-19 using ex-vitro and in vitro methods. Asian J Biotechnol 2:73–85

    Article  Google Scholar 

  • Kordrostami M, Rabiei B, Kumleh HH (2016) Association analysis, genetic diversity and haplotyping of rice plants under salt stress using SSR markers linked to salt tolerance and morpho-physiological characteristics. Plant Syst Evol 302:871–890

    Article  CAS  Google Scholar 

  • Kordrostami M, Rabiei B, Kumleh HH (2017) Biochemical, physiological and molecular evaluation of rice cultivars differing in salt tolerance at the seedling stage. Physiol Mol Biol Plants 23:529–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latef AAHA, Chaoxing H (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hortic 127:228–233

    Article  CAS  Google Scholar 

  • Li HQ, Jiang XW (2017) Inoculation with plant growth-promoting bacteria (PGPB) improves salt tolerance of maize seedling. Russ J Plant Physiol 64:235–241

    Article  CAS  Google Scholar 

  • Lichtenthaler H, Buschmann B (2001) Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Curr Protocol Food Anal Chem 1(1):F4.3.1–F4.3.8

    Article  Google Scholar 

  • Lindner RC (1944) Rapid analytical methods for some of the more common inorganic constituents of plant tissues. Plant Physiol 19:76–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M (2014) Trehalose metabolism in plants. Plant J 79:544–567

    Article  CAS  PubMed  Google Scholar 

  • Mushtaq Z, Faizan S, Gulzar B (2020) Salt stress, its impacts on plants and the strategies plants are employing against it: a review. J Appl Biol Biotechnol 8:81–91

    Article  CAS  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Kharal MA (2016) Role of phytohormones in stress tolerance of plants. In: Hakeem KR, Akthar MS (eds) Plant, soil and microbes. Springer, Cham, pp 385–421

    Chapter  Google Scholar 

  • Olubukola O, Babalola O, Glick BR (2012) The use of microbial inoculants in African agriculture. Food Agric Environ 10:540–549

    Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 22:4056–4075

    Article  CAS  Google Scholar 

  • Peoples MB, Herridge DF, Ladha JK (1995) Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production. Plant Soil 174:3–28

    Article  CAS  Google Scholar 

  • Perez-Lopez U, Robredo A, Lacuesta M, Sgherri C, Munoz Rueda A, Navari-Izzo F, Mena-Petite A (2009) The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2. Physiol Plant 135:29–42

    Article  CAS  PubMed  Google Scholar 

  • Porcel R, Aroca R, Azcon R, Ruiz-Lozano JM (2016) Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root to shoot distribution. Mycorrhiza 26:673–684

    Article  CAS  PubMed  Google Scholar 

  • Prapaga K, Dasina S, Shanika W (2015) Effect of different salinity levels of a soil on nutrient availability of manure amended soil. In: 5th international symposium, IntSym 2015, SEUSL

  • Reina-Bueno M, Argandoña M, Nieto JJ, Hidalgo-García A, Iglesias-Guerra F, Delgado MJ, Vargas C (2012) Role of trehalose in heat and desiccation tolerance in the soil bacterium Rhizobium etli. BMC Microbiol 12:207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saleem A, Ashraf M, Akram N (2011) Salt (NaCl)-induced modulation in some key physio- biochemical attributes in okra (Abelmoschusesculentus L.). J Agron Crop Sci 197:202–213

    Article  CAS  Google Scholar 

  • Sanchez M, Revilla G, Zarra I (1995) Changes in peroxidase activity associated with cell walls during pine hypocotyl growth. Ann Bot 75:415–419

    Article  CAS  Google Scholar 

  • Santos H, da Costa MS (2002) Compatible solutes of organisms that live in hot saline environments. Environ Microbiol 4:501–509

    Article  CAS  PubMed  Google Scholar 

  • Santos ADA, Silveira JAGD, Guilherme EDA, Bonifacio A, Rodrigues AC, Figueiredo MDVB (2018) Changes induced by co-inoculation in nitrogen-carbon metabolism in cowpea under salinity stress. Braz J Microbiol 49:513–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhiza on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  CAS  PubMed  Google Scholar 

  • Siddikee MA, Glick BR, Chauhan PS, Yim WJ, Sa TM (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem 49:427–434

    Article  CAS  PubMed  Google Scholar 

  • Silva EN, Ribeiro RV, Ferreira-Silva SL, Viégas RA, Silveira JAG (2011) Salt stress induced damages on the photosynthesis of physic nut young plants. Sci Agric 68:62–68

    Article  Google Scholar 

  • Singh RP, Jha PN (2017) The PGPR Stenotrophomonasmaltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants. Front Microbiol 8:1945

    Article  PubMed  PubMed Central  Google Scholar 

  • Sullivan CY, Ross WM (1979) Selecting the drought and heat resistance in grain sorghum. In: Mussel H, Staples RC (eds) Stress physiology in crop plants. Wiley, New York, pp 263–281

    Google Scholar 

  • Taffouo VD, Kouamou JK, Ngalangue LMT, Ndjeudji BAN, Akoa A (2009) Effects of salinity stress on growth, ions partitioning and yield of some cowpea (Vigna ungiuculata L., walp) cultivars. Int J Bot 5:135–143

    Article  CAS  Google Scholar 

  • Talaat NB (2019) Effective microorganisms: an innovative tool for inducing common bean (Phaseolus vulgaris L.) salt-tolerance by regulating photosynthetic rate and endogenous phytohormones production. Sci Hortic 250:254–265

    Article  CAS  Google Scholar 

  • Talaat NB, Shawk BT (2012) 24-Epibrassinolide ameliorates the saline stress and improves the productivity of wheat (Triticum aestivum L.). Environ Exp Bot 82:80–88

    Article  CAS  Google Scholar 

  • Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5:51–58

    Article  CAS  Google Scholar 

  • Thrall PH, Bever JD, Slattery JF (2008) Rhizobial mediation of Acacia adaptation to soil salinity: evidence of underlying trade-offs and tests of expected plants. J Ecol 96:746–755

    Article  Google Scholar 

  • van Veen JA, van Overbeek LS, van Elisas JD (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 61:121–135

    PubMed  PubMed Central  Google Scholar 

  • Wang HS, Jia GS (2012) Satellite-based monitoring of decadal soil salinization and climate effects in a semi-arid region of China. Adv Atmos Sci 29:1089–1099

    Article  CAS  Google Scholar 

  • Wdowiak-Wróbel S, Leszcz A, Małek W (2013) Salt tolerance in Astragaluscicer micro-symbionts: the role of glycine betaine in osmo protection. Curr Microbiol 66:428–436

    Article  PubMed  CAS  Google Scholar 

  • Yasin NA, Akram W, Khan WU, Ahmad SR, Ahmad A, Ali A (2018) Halotolerant plant-growth promoting rhizobacteria modulate gene expression and osmolyte production to improve salinity tolerance and growth in Capsicum annum L. Environ Sci Pollut Res 25:23236–23250

    Article  CAS  Google Scholar 

  • Yurgel SN, Rice J, Mulder M, Kahn ML, Belova VS, Roumiantseva ML (2013) Truncated betB2-144 plays a critical role in Sinorhizobiummeliloti Rm2011 osmo protection and glycine- betaine catabolism. Eur J Soil Biol 54:48–55

    Article  CAS  Google Scholar 

  • Zeng L, Shannon MC (2000) Salinity effects on seedling growth and yield components of rice. Crop Sci 40:996–1003

    Article  Google Scholar 

  • Zhou Y, Tang N, Huang L, Zhao Y, Tang X, Wang K (2018) Effects of salt stress on plant growth, antioxidant capacity, glandular trichome density, and volatile exudates of Schizonepeta tenuifolia Briq. Int J Mol Sci 19:252

    Article  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZM, SF and BG have performed the experiments and written the manuscript. KRH has analysed the data and critically edited the manuscript.

Corresponding author

Correspondence to Khalid Rehman Hakeem.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Parvaiz Ahmad.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mushtaq, Z., Faizan, S., Gulzar, B. et al. Inoculation of Rhizobium Alleviates Salinity Stress Through Modulation of Growth Characteristics, Physiological and Biochemical Attributes, Stomatal Activities and Antioxidant Defence in Cicer arietinum L.. J Plant Growth Regul 40, 2148–2163 (2021). https://doi.org/10.1007/s00344-020-10267-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-020-10267-1

Keywords

Navigation