Skip to main content
Log in

Robotic-assisted kidney transplantation: our first case

  • Original Article
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

Kidney transplantation is the preferred treatment for patients with end-stage renal disease. In order to reduce the morbidity of the open surgery, a robotic-assisted approach has been recently introduced. According to the published literature, the robotic surgery allows the performance of kidney transplantation under optimal operative conditions while maintaining the safety and the functional results of the open approach.

Methods

We present the case of a mother donating to her daughter affected by end-stage renal disease (ESRD) due to Alport disease (creatinine: 353 umol/l; GFR: 13 ml/min per 1.73 m2).

Results

A robotic-assisted kidney transplant (RAKT) was successfully performed. Surgical time was 120 min with 53 min for vascular suture. The estimated blood loss was <50 cc. The kidney started to produce urine intra-operatively with a rate of 250 cc/h, which remained constant over the next hours. During the first postoperative day, the patient was ambulating and started oral intake. Pain was minimal, and no analgesia was required after 48 h. Serum creatinine improved progressively to 89 umol/l on postoperative day 3. No surgical complications were recorded, and the patient was sent home on postoperative day 5.

Conclusion

We present the first Spanish transperitoneal pure RAKT from a living-related donor. We believe this is the second pure robotic-assisted kidney transplantation case performed in Europe. We believe that the potential advantages of RAKT are related to the quality of the vascular anastomosis, the possible lower complication rate and the shorter recovery of the recipients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

dVSS® :

Da Vinci Surgical System®

ESRD:

End-stage renal disease

EIV:

External iliac vessels

GFR:

Glomerular filtration rate

KT:

Kidney transplantation

LDN:

Laparoscopic donor nephrectomy

MIS:

Minimally invasive surgery

RAKT:

Robotic-assisted kidney transplantation

tRAKT:

Transperitoneal robotic-assisted kidney transplantation

References

  1. Maroz N, Simman R (2013) Wound healing in patients with impaired kidney function. J Am Coll Clin Wound Spec 5:2–7. doi:10.1016/j.jccw.2014.05.002

    Article  PubMed Central  PubMed  Google Scholar 

  2. Collins AJ, Foley RN, Chavers B et al (2012) United States renal data system 2011 annual data report: atlas of chronic kidney disease and end-stage renal disease in the United States. Am J Kidney Dis Off J Natl Kidney Found 59(A7):e1420. doi:10.1053/j.ajkd.2011.11.015

    Google Scholar 

  3. Murray JE, Merrill JP, Harrison JH (1958) Kidney transplantation between seven pairs of identical twins. Ann Surg 148:343–359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Ratner LE, Ciseck LJ, Moore RG et al (1995) Laparoscopic live donor nephrectomy. Transplantation 60:1047–1049

    CAS  PubMed  Google Scholar 

  5. Øyen O, Scholz T, Hartmann A, Pfeffer P (2006) Minimally invasive kidney transplantation: the first experience. Transplant Proc 38:2798–2802. doi:10.1016/j.transproceed.2006.08.102

  6. Rosales A, Salvador JT, Urdaneta G et al (2010) Laparoscopic kidney transplantation. Eur Urol 57:164–167. doi:10.1016/j.eururo.2009.06.035

    Article  PubMed  Google Scholar 

  7. Menon M, Tewari A, Peabody J, Team VIP (2003) Vattikuti Institute prostatectomy: technique. J Urol 169:2289–2292. doi:10.1097/01.ju.0000067464.53313.dd

    Article  PubMed  Google Scholar 

  8. Yuh B, Wilson T, Bochner B et al (2015) Systematic review and cumulative analysis of oncologic and functional outcomes after robot-assisted radical cystectomy. Eur Urol 67:402–422. doi:10.1016/j.eururo.2014.12.008

    Article  PubMed  Google Scholar 

  9. Giulianotti P, Gorodner V, Sbrana F et al (2010) Robotic transabdominal kidney transplantation in a morbidly obese patient. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg 10:1478–1482. doi:10.1111/j.1600-6143.2010.03116.x

    Article  CAS  Google Scholar 

  10. Doumerc N, Roumiguié M, Rischmann P, Sallusto F (2015) Totally robotic approach with transvaginal insertion for kidney transplantation. Eur Urol. doi:10.1016/j.eururo.2015.07.026

    PubMed  Google Scholar 

  11. Menon M, Sood A, Bhandari M et al (2014) Robotic kidney transplantation with regional hypothermia: a step-by-step description of the Vattikuti Urology Institute-Medanta technique (IDEAL phase 2a). Eur Urol 65:991–1000. doi:10.1016/j.eururo.2013.12.006

    Article  PubMed  Google Scholar 

  12. Riedmiller H, Gerharz EW (2008) Antireflux surgery: Lich-Gregoir extravesical ureteric tunnelling. BJU Int 101:1467–1482. doi:10.1111/j.1464-410X.2008.07683.x

    Article  PubMed  Google Scholar 

  13. Trinh Q-D, Sammon J, Sun M et al (2012) Perioperative outcomes of robot-assisted radical prostatectomy compared with open radical prostatectomy: results from the nationwide inpatient sample. Eur Urol 61:679–685. doi:10.1016/j.eururo.2011.12.027

    Article  PubMed  Google Scholar 

  14. Giedelman CA, Abdul-Muhsin H, Schatloff O et al (2013) The impact of robotic surgery in urology. Actas Urol Esp 37:652–657. doi:10.1016/j.acuro.2012.11.015

    Article  CAS  PubMed  Google Scholar 

  15. Burgos FJ, Pascual J, Quicios C, et al. (2006) Post-kidney transplant surgical complications under new immunosuppressive regimens. Transplant Proc 38:2445–2447. doi:10.1016/j.transproceed.2006.08.192

  16. Hoznek A, Zaki SK, Samadi DB et al (2002) Robotic assisted kidney transplantation: an initial experience. J Urol 167:1604–1606

    Article  PubMed  Google Scholar 

  17. Boggi U, Vistoli F, Signori S et al (2011) Robotic renal transplantation: first European case. Transpl Int Off J Eur Soc Organ Transplant 24:213–218. doi:10.1111/j.1432-2277.2010.01191.x

    Article  Google Scholar 

  18. Tsai M-K, Lee C-Y, Yang C-Y et al (2014) Robot-assisted renal transplantation in the retroperitoneum. Transpl Int Off J Eur Soc Organ Transplant 27:452–457. doi:10.1111/tri.12279

    Article  Google Scholar 

Download references

Authors’ contribution

A Breda involved in project development and data analysis and wrote the manuscript, surgeon. L. Gausa involved in project development, surgeon. A. Territo involved in data collection and data analysis and wrote the manuscript. J. M. Lopez-Martinez involved in data collection and data analysis and wrote the manuscript. Surgeons O. Rodriguez-Faba, J. Caffaratti, and J. Ponce de León involved in data supervision and L. Guirado involved in data collection and data analysis. H. Villavicencio supervised the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Breda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breda, A., Gausa, L., Territo, A. et al. Robotic-assisted kidney transplantation: our first case. World J Urol 34, 443–447 (2016). https://doi.org/10.1007/s00345-015-1673-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-015-1673-6

Keywords

Navigation