Skip to main content

Advertisement

Log in

Advanced ultrasound in the diagnosis of prostate cancer

  • Topic Paper
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

The diagnosis of prostate cancer (PCa) can be challenging due to the limited performance of current diagnostic tests, including PSA, digital rectal examination and transrectal conventional US. Multiparametric MRI has improved PCa diagnosis and is recommended prior to biopsy; however, mp-MRI does miss a substantial number of PCa. Advanced US modalities include transrectal prostate elastography and contrast-enhanced US, as well as improved B-mode, micro-US and micro-Doppler techniques. These techniques can be combined to define a novel US approach, multiparametric US (mp-US). Mp-US improves PCa diagnosis but is not sufficiently accurate to obviate the utility of mp-MRI. Mp-US using advanced techniques and mp-MRI provide complementary information which will become even more important in the era of focal therapy, where precise identification of PCa location is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mottet N, Bellmunt J, Bolla M et al (2017) EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol 71:618–629. https://doi.org/10.1016/j.eururo.2016.08.003

    Article  PubMed  Google Scholar 

  2. Hayes JH, Barry MJ (2014) Screening for prostate cancer with the prostate-specific antigen test: a review of current evidence. JAMA 311:1143–1149. https://doi.org/10.1001/jama.2014.2085

    Article  CAS  PubMed  Google Scholar 

  3. Olleik G, Kassouf W, Aprikian A et al (2018) Evaluation of new tests and interventions for prostate cancer management: a systematic review. J Natl Compr Cancer Netw JNCCN 16:1340–1351. https://doi.org/10.6004/jnccn.2018.7055

    Article  Google Scholar 

  4. Kelloff GJ, Choyke P, Coffey DS, Prostate Cancer Imaging Working Group (2009) Challenges in clinical prostate cancer: role of imaging. AJR Am J Roentgenol 192:1455–1470. https://doi.org/10.2214/AJR.09.2579

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mian BM, Naya Y, Okihara K et al (2002) Predictors of cancer in repeat extended multisite prostate biopsy in men with previous negative extended multisite biopsy. Urology 60:836–840. https://doi.org/10.1016/s0090-4295(02)01950-7

    Article  PubMed  Google Scholar 

  6. Singh H, Canto EI, Shariat SF et al (2004) Predictors of prostate cancer after initial negative systematic 12 core biopsy. J Urol 171:1850–1854. https://doi.org/10.1097/01.ju.0000119667.86071.e7

    Article  PubMed  Google Scholar 

  7. Delongchamps NB, Haas GP (2009) Saturation biopsies for prostate cancer: current uses and future prospects. Nat Rev Urol 6:645–652. https://doi.org/10.1038/nrurol.2009.213

    Article  PubMed  Google Scholar 

  8. Giannarini G, Autorino R, di Lorenzo G (2009) Saturation biopsy of the prostate: why saturation does not saturate. Eur Urol 56:619–621. https://doi.org/10.1016/j.eururo.2009.03.044

    Article  PubMed  Google Scholar 

  9. Ashley RA, Inman BA, Routh JC et al (2008) Reassessing the diagnostic yield of saturation biopsy of the prostate. Eur Urol 53:976–981. https://doi.org/10.1016/j.eururo.2007.10.049

    Article  PubMed  Google Scholar 

  10. Nougaret S, Robertson N, Golia Pernicka J et al (2017) The performance of PI-RADSv2 and quantitative apparent diffusion coefficient for predicting confirmatory prostate biopsy findings in patients considered for active surveillance of prostate cancer. Abdom Radiol NY 42:1968–1974. https://doi.org/10.1007/s00261-017-1086-7

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bloom JB, Hale GR, Gold SA et al (2019) Predicting Gleason Group progression for men on prostate cancer active surveillance: role of a negative confirmatory magnetic resonance imaging-ultrasound fusion biopsy. J Urol 201:84–90. https://doi.org/10.1016/j.juro.2018.07.051

    Article  PubMed  Google Scholar 

  12. Richenberg J, Løgager V, Panebianco V et al (2019) The primacy of multiparametric MRI in men with suspected prostate cancer. Eur Radiol 29:6940–6952. https://doi.org/10.1007/s00330-019-06166-z

    Article  PubMed  PubMed Central  Google Scholar 

  13. Faria R, Soares MO, Spackman E et al (2018) Optimising the diagnosis of prostate cancer in the era of multiparametric magnetic resonance imaging: a cost-effectiveness analysis based on the Prostate MR Imaging Study (PROMIS). Eur Urol 73:23–30. https://doi.org/10.1016/j.eururo.2017.08.018

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rouvière O, Puech P, Renard-Penna R et al (2019) Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study. Lancet Oncol 20:100–109. https://doi.org/10.1016/S1470-2045(18)30569-2

    Article  PubMed  Google Scholar 

  15. Vargas HA, Akin O, Shukla-Dave A et al (2012) Performance characteristics of MR imaging in the evaluation of clinically low-risk prostate cancer: a prospective study. Radiology 265:478–487. https://doi.org/10.1148/radiol.12120041

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fütterer JJ, Briganti A, De Visschere P et al (2015) Can clinically significant prostate cancer be detected with multiparametric magnetic resonance imaging? A systematic review of the literature. Eur Urol 68:1045–1053. https://doi.org/10.1016/j.eururo.2015.01.013

    Article  PubMed  Google Scholar 

  17. Johnson DC, Raman SS, Mirak SA et al (2019) Detection of individual prostate cancer foci via multiparametric magnetic resonance imaging. Eur Urol 75:712–720. https://doi.org/10.1016/j.eururo.2018.11.031

    Article  CAS  PubMed  Google Scholar 

  18. Niaf É, Flamary R, Rouvière O et al (2014) Kernel-based learning from both qualitative and quantitative labels: application to prostate cancer diagnosis based on multiparametric MR imaging. IEEE Trans Image Process Publ IEEE Signal Process Soc 23:979–991. https://doi.org/10.1109/TIP.2013.2295759

    Article  Google Scholar 

  19. Dinh AH, Melodelima C, Souchon R et al (2018) Characterization of prostate cancer with gleason score of at least 7 by using quantitative multiparametric mr imaging: validation of a computer-aided diagnosis system in patients referred for prostate biopsy. Radiology 287:525–533. https://doi.org/10.1148/radiol.2017171265

    Article  PubMed  Google Scholar 

  20. Norberg M, Egevad L, Holmberg L et al (1997) The sextant protocol for ultrasound-guided core biopsies of the prostate underestimates the presence of cancer. Urology 50:562–566. https://doi.org/10.1016/S0090-4295(97)00306-3

    Article  CAS  PubMed  Google Scholar 

  21. Beerlage HP, Aarnink RG, Ruijter ET et al (2001) Correlation of transrectal ultrasound, computer analysis of transrectal ultrasound and histopathology of radical prostatectomy specimen. Prostate Cancer Prostatic Dis 4:56–62. https://doi.org/10.1038/sj.pcan.4500495

    Article  CAS  PubMed  Google Scholar 

  22. Cheng S, Rifkin MD (2001) Color Doppler imaging of the prostate: important adjunct to endorectal ultrasound of the prostate in the diagnosis of prostate cancer. Ultrasound Q 17:185–189. https://doi.org/10.1097/00013644-200109000-00008

    Article  CAS  PubMed  Google Scholar 

  23. Zhai L, Madden J, Foo W-C et al (2010) Characterizing stiffness of human prostates using acoustic radiation force. Ultrason Imaging 32:201–213. https://doi.org/10.1177/016173461003200401

    Article  PubMed  PubMed Central  Google Scholar 

  24. Baumgart LA, Gerling GJ, Bass EJ (2010) Characterizing the range of simulated prostate abnormalities palpable by digital rectal examination. Cancer Epidemiol 34:79–84. https://doi.org/10.1016/j.canep.2009.12.002

    Article  PubMed  PubMed Central  Google Scholar 

  25. Smith DS, Catalona WJ (1995) Interexaminer variability of digital rectal examination in detecting prostate cancer. Urology 45:70–74. https://doi.org/10.1016/s0090-4295(95)96812-1

    Article  CAS  PubMed  Google Scholar 

  26. Lughezzani G, Saita A, Lazzeri M et al (2019) Comparison of the diagnostic accuracy of micro-ultrasound and magnetic resonance imaging/ultrasound fusion targeted biopsies for the diagnosis of clinically significant prostate cancer. Eur Urol Oncol 2:329–332. https://doi.org/10.1016/j.euo.2018.10.001

    Article  PubMed  Google Scholar 

  27. Loch T (2007) Computerized transrectal ultrasound (C-TRUS) of the prostate: detection of cancer in patients with multiple negative systematic random biopsies. World J Urol 25:375–380. https://doi.org/10.1007/s00345-007-0181-8

    Article  PubMed  Google Scholar 

  28. Strunk T, Decker G, Willinek W et al (2014) Combination of C-TRUS with multiparametric MRI: potential for improving detection of prostate cancer. World J Urol 32:335–339. https://doi.org/10.1007/s00345-012-0924-z

    Article  CAS  PubMed  Google Scholar 

  29. Braeckman J, Autier P, Soviany C et al (2008) The accuracy of transrectal ultrasonography supplemented with computer-aided ultrasonography for detecting small prostate cancers. BJU Int 102:1560–1565. https://doi.org/10.1111/j.1464-410X.2008.07878.x

    Article  PubMed  Google Scholar 

  30. Sivaraman A, Sanchez-Salas R, Barret E et al (2015) Prostate histoscanning true targeting guided prostate biopsy: initial clinical experience. World J Urol 33:1475–1479. https://doi.org/10.1007/s00345-014-1434-y

    Article  PubMed  Google Scholar 

  31. Schiffmann J, Mehring G, Tennstedt P et al (2016) True targeting-derived prostate biopsy: HistoScanningTM remained inadequate despite advanced technical efforts. World J Urol 34:495–500. https://doi.org/10.1007/s00345-015-1637-x

    Article  PubMed  Google Scholar 

  32. Wysock JS, Xu A, Orczyk C, Taneja SS (2017) Histo scanning TM to detect and characterize prostate cancer-a review of existing literature. Curr Urol Rep 18:97. https://doi.org/10.1007/s11934-017-0747-y

    Article  PubMed  Google Scholar 

  33. Wildeboer RR, van Sloun RJG, Wijkstra H, Mischi M (2020) Artificial intelligence in multiparametric prostate cancer imaging with focus on deep-learning methods. Comput Methods Progr Biomed 189:105316. https://doi.org/10.1016/j.cmpb.2020.105316

    Article  Google Scholar 

  34. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659. https://doi.org/10.1056/NEJM198612253152606

    Article  CAS  PubMed  Google Scholar 

  35. Tuxhorn JA, Ayala GE, Rowley DR (2001) Reactive stroma in prostate cancer progression. J Urol 166:2472–2483

    Article  CAS  Google Scholar 

  36. Barron DA, Rowley DR (2012) The reactive stroma microenvironment and prostate cancer progression. Endocr Relat Cancer 19:R187–204. https://doi.org/10.1530/ERC-12-0085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tuxhorn JA, Ayala GE, Smith MJ et al (2002) Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling. Clin Cancer Res 8:2912–2923

    CAS  PubMed  Google Scholar 

  38. Phipps S, Yang THJ, Habib FK et al (2005) Measurement of tissue mechanical characteristics to distinguish between benign and malignant prostatic disease. Urology 66:447–450. https://doi.org/10.1016/j.urology.2005.03.017

    Article  CAS  PubMed  Google Scholar 

  39. Hoyt K, Castaneda B, Zhang M et al (2008) Tissue elasticity properties as biomarkers for prostate cancer. Cancer Biomark Sect Dis Markers 4:213–225. https://doi.org/10.3233/cbm-2008-44-505

    Article  Google Scholar 

  40. Zhang M, Nigwekar P, Castaneda B et al (2008) Quantitative characterization of viscoelastic properties of human prostate correlated with histology. Ultrasound Med Biol 34:1033–1042. https://doi.org/10.1016/j.ultrasmedbio.2007.11.024

    Article  PubMed  Google Scholar 

  41. Ahn B-M, Kim J, Ian L et al (2010) Mechanical property characterization of prostate cancer using a minimally motorized indenter in an ex vivo indentation experiment. Urology 76:1007–1011. https://doi.org/10.1016/j.urology.2010.02.025

    Article  PubMed  Google Scholar 

  42. Carson WC, Gerling GJ, Krupski TL et al (2011) Material characterization of ex vivo prostate tissue via spherical indentation in the clinic. Med Eng Phys 33:302–309. https://doi.org/10.1016/j.medengphy.2010.10.013

    Article  PubMed  Google Scholar 

  43. Barr RG, Cosgrove D, Brock M et al (2017) WFUMB guidelines and recommendations on the clinical use of ultrasound elastography: part 5. Prostate Ultrasound Med Biol 43:27–48. https://doi.org/10.1016/j.ultrasmedbio.2016.06.020

    Article  PubMed  Google Scholar 

  44. Tsutsumi M, Miyagawa T, Matsumura T et al (2010) Real-time balloon inflation elastography for prostate cancer detection and initial evaluation of clinicopathologic analysis. AJR Am J Roentgenol 194:W471–476. https://doi.org/10.2214/AJR.09.3301

    Article  PubMed  Google Scholar 

  45. Miyagawa T, Tsutsumi M, Matsumura T et al (2009) Real-time elastography for the diagnosis of prostate cancer: evaluation of elastographic moving images. Jpn J Clin Oncol 39:394–398. https://doi.org/10.1093/jjco/hyp026

    Article  PubMed  Google Scholar 

  46. Junker D, Schäfer G, Aigner F et al (2012) Potentials and limitations of real-time elastography for prostate cancer detection: a whole-mount step section analysis. Sci World J 2012:193213. https://doi.org/10.1100/2012/193213

    Article  Google Scholar 

  47. Junker D, Schäfer G, Kobel C et al (2014) Comparison of real-time elastography and multiparametric MRI for prostate cancer detection: a whole-mount step-section analysis. AJR Am J Roentgenol 202:W263–269. https://doi.org/10.2214/AJR.13.11061

    Article  PubMed  Google Scholar 

  48. Sumura M, Shigeno K, Hyuga T et al (2007) Initial evaluation of prostate cancer with real-time elastography based on step-section pathologic analysis after radical prostatectomy: a preliminary study. Int J Urol Off J Jpn Urol Assoc 14:811–816. https://doi.org/10.1111/j.1442-2042.2007.01829.x

    Article  Google Scholar 

  49. Zhu Y, Chen Y, Qi T et al (2014) Prostate cancer detection with real-time elastography using a bi-plane transducer: comparison with step section radical prostatectomy pathology. World J Urol 32:329–333. https://doi.org/10.1007/s00345-012-0922-1

    Article  PubMed  Google Scholar 

  50. Zhang B, Ma X, Zhan W et al (2014) Real-time elastography in the diagnosis of patients suspected of having prostate cancer: a meta-analysis. Ultrasound Med Biol 40:1400–1407. https://doi.org/10.1016/j.ultrasmedbio.2014.02.020

    Article  PubMed  Google Scholar 

  51. Pallwein L, Mitterberger M, Struve P et al (2007) Comparison of sonoelastography guided biopsy with systematic biopsy: impact on prostate cancer detection. Eur Radiol 17:2278–2285. https://doi.org/10.1007/s00330-007-0606-1

    Article  PubMed  Google Scholar 

  52. Aigner F, Pallwein L, Junker D et al (2010) Value of real-time elastography targeted biopsy for prostate cancer detection in men with prostate specific antigen 1.25 ng/ml or greater and 4.00 ng/ml or less. J Urol 184:913–917. https://doi.org/10.1016/j.juro.2010.05.026

    Article  PubMed  Google Scholar 

  53. Brock M, von Bodman C, Palisaar RJ et al (2012) The impact of real-time elastography guiding a systematic prostate biopsy to improve cancer detection rate: a prospective study of 353 patients. J Urol 187:2039–2043. https://doi.org/10.1016/j.juro.2012.01.063

    Article  PubMed  Google Scholar 

  54. Wang R, Chen J-J, Hu B (2015) Transrectal real-time elastography-guided transperineal prostate biopsy as an improved tool for prostate cancer diagnosis. Int J Clin Exp Med 8:6522–6529

    PubMed  PubMed Central  Google Scholar 

  55. Tsutsumi M, Miyagawa T, Matsumura T et al (2007) The impact of real-time tissue elasticity imaging (elastography) on the detection of prostate cancer: clinicopathological analysis. Int J Clin Oncol 12:250–255. https://doi.org/10.1007/s10147-007-0669-7

    Article  PubMed  Google Scholar 

  56. Kratzenberg J, Salomon G, Tennstedt P et al (2018) Prostate cancer rates in patients with initially negative elastography-targeted biopsy vs. systematic biopsy. World J Urol 36:623–628. https://doi.org/10.1007/s00345-018-2178-x

    Article  PubMed  Google Scholar 

  57. Bercoff J, Tanter M, Fink M (2004) Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control 51:396–409. https://doi.org/10.1109/tuffc.2004.1295425

    Article  PubMed  Google Scholar 

  58. Boehm K, Salomon G, Beyer B et al (2015) Shear wave elastography for localization of prostate cancer lesions and assessment of elasticity thresholds: implications for targeted biopsies and active surveillance protocols. J Urol 193:794–800. https://doi.org/10.1016/j.juro.2014.09.100

    Article  PubMed  Google Scholar 

  59. Woo S, Kim SY, Lee MS et al (2015) Shear wave elastography assessment in the prostate: an intraobserver reproducibility study. Clin Imaging 39:484–487. https://doi.org/10.1016/j.clinimag.2014.11.013

    Article  PubMed  Google Scholar 

  60. Woo S, Kim SY, Cho JY, Kim SH (2014) Shear wave elastography for detection of prostate cancer: a preliminary study. Korean J Radiol 15:346–355. https://doi.org/10.3348/kjr.2014.15.3.346

    Article  PubMed  PubMed Central  Google Scholar 

  61. Correas J-M, Tissier A-M, Khairoune A et al (2015) Prostate cancer: diagnostic performance of real-time shear-wave elastography. Radiology 275:280–289. https://doi.org/10.1148/radiol.14140567

    Article  PubMed  Google Scholar 

  62. Ahmad S, Cao R, Varghese T et al (2013) Transrectal quantitative shear wave elastography in the detection and characterisation of prostate cancer. Surg Endosc 27:3280–3287. https://doi.org/10.1007/s00464-013-2906-7

    Article  PubMed  Google Scholar 

  63. Rouvière O, Melodelima C, Hoang Dinh A et al (2017) Stiffness of benign and malignant prostate tissue measured by shear-wave elastography: a preliminary study. Eur Radiol 27:1858–1866. https://doi.org/10.1007/s00330-016-4534-9

    Article  PubMed  Google Scholar 

  64. Barr RG, Memo R, Schaub CR (2012) Shear wave ultrasound elastography of the prostate: initial results. Ultrasound Q 28:13–20. https://doi.org/10.1097/RUQ.0b013e318249f594

    Article  PubMed  Google Scholar 

  65. Ji Y, Ruan L, Ren W et al (2019) Stiffness of prostate gland measured by transrectal real-time shear wave elastography for detection of prostate cancer: a feasibility study. Br J Radiol 92:20180970. https://doi.org/10.1259/bjr.20180970

    Article  PubMed  PubMed Central  Google Scholar 

  66. Boehm K, Budäus L, Tennstedt P et al (2015) Prediction of significant prostate cancer at prostate biopsy and per core detection rate of targeted and systematic biopsies using real-time shear wave elastography. Urol Int 95:189–196. https://doi.org/10.1159/000431233

    Article  PubMed  Google Scholar 

  67. Xiang L-H, Fang Y, Wan J et al (2019) Shear-wave elastography: role in clinically significant prostate cancer with false-negative magnetic resonance imaging. Eur Radiol 29:6682–6689. https://doi.org/10.1007/s00330-019-06274-w

    Article  PubMed  Google Scholar 

  68. Woo S, Suh CH, Kim SY et al (2017) Shear-wave elastography for detection of prostate cancer: a systematic review and diagnostic meta-analysis. AJR Am J Roentgenol 209:806–814. https://doi.org/10.2214/AJR.17.18056

    Article  PubMed  Google Scholar 

  69. Yang Y, Zhao X, Zhao X et al (2019) Value of shear wave elastography for diagnosis of primary prostate cancer: a systematic review and meta-analysis. Med Ultrason 21:382–388. https://doi.org/10.11152/mu-2051

    Article  PubMed  Google Scholar 

  70. Sidhu PS, Cantisani V, Dietrich CF et al (2018) The EFSUMB guidelines and recommendations for the clinical practice of contrast-enhanced ultrasound (CEUS) in non-hepatic applications: update 2017 (long version). Ultraschall Med 39:e2–e44. https://doi.org/10.1055/a-0586-1107

    Article  PubMed  Google Scholar 

  71. Trabulsi EJ, Calio BP, Kamel SI et al (2019) Prostate contrast enhanced transrectal ultrasound evaluation of the prostate with whole-mount prostatectomy correlation. Urology 133:187–191. https://doi.org/10.1016/j.urology.2019.07.026

    Article  PubMed  Google Scholar 

  72. Roy C, Buy X, Lang H et al (2003) Contrast enhanced color Doppler endorectal sonography of prostate: efficiency for detecting peripheral zone tumors and role for biopsy procedure. J Urol 170:69–72. https://doi.org/10.1097/01.ju.0000072342.01573.8d

    Article  PubMed  Google Scholar 

  73. Mitterberger MJ, Aigner F, Horninger W et al (2010) Comparative efficiency of contrast-enhanced colour Doppler ultrasound targeted versus systematic biopsy for prostate cancer detection. Eur Radiol 20:2791–2796. https://doi.org/10.1007/s00330-010-1860-1

    Article  PubMed  Google Scholar 

  74. Halpern EJ, Gomella LG, Forsberg F et al (2012) Contrast enhanced transrectal ultrasound for the detection of prostate cancer: a randomized, double-blind trial of dutasteride pretreatment. J Urol 188:1739–1745. https://doi.org/10.1016/j.juro.2012.07.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yunkai Z, Yaqing C, Jun J et al (2019) Comparison of contrast-enhanced ultrasound targeted biopsy versus standard systematic biopsy for clinically significant prostate cancer detection: results of a prospective cohort study with 1024 patients. World J Urol 37:805–811. https://doi.org/10.1007/s00345-018-2441-1

    Article  PubMed  Google Scholar 

  76. Li Y, Tang J, Fei X, Gao Y (2013) Diagnostic performance of contrast enhanced ultrasound in patients with prostate cancer: a meta-analysis. Acad Radiol 20:156–164. https://doi.org/10.1016/j.acra.2012.09.018

    Article  PubMed  Google Scholar 

  77. Apfelbeck M, Chaloupka M, Schlenker B et al (2019) Follow-up after focal therapy of the prostate with high intensity focused ultrasound (HIFU) using contrast enhanced ultrasound (CEUS) in combination with MRI image fusion. Clin Hemorheol Microcirc 73:135–143. https://doi.org/10.3233/CH-199222

    Article  CAS  PubMed  Google Scholar 

  78. Moschouris H, Stamatiou K, Malagari K et al (2019) The value of contrast-enhanced ultrasonography in detection of prostatic infarction after prostatic artery embolization for the treatment of symptomatic benign prostatic hyperplasia. Diagn Interv Radiol Ank Turk 25:134–143. https://doi.org/10.5152/dir.2019.18410

    Article  Google Scholar 

  79. Maxeiner A, Fischer T, Schwabe J et al (1980) (2019) Contrast-enhanced ultrasound (CEUS) and quantitative perfusion analysis in patients with suspicion for prostate cancer. Ultraschall Med Stuttg Ger 40:340–348. https://doi.org/10.1055/a-0594-2093

    Article  Google Scholar 

  80. Kuenen MPJ, Saidov TA, Wijkstra H et al (2013) Spatiotemporal correlation of ultrasound contrast agent dilution curves for angiogenesis localization by dispersion imaging. IEEE Trans Ultrason Ferroelectr Freq Control 60:2665–2669. https://doi.org/10.1109/TUFFC.2013.2865

    Article  PubMed  Google Scholar 

  81. van Sloun RJ, Demi L, Postema AW et al (2017) Ultrasound-contrast-agent dispersion and velocity imaging for prostate cancer localization. Med Image Anal 35:610–619. https://doi.org/10.1016/j.media.2016.09.010

    Article  PubMed  Google Scholar 

  82. Postema AW, Frinking PJA, Smeenge M et al (2016) Dynamic contrast-enhanced ultrasound parametric imaging for the detection of prostate cancer. BJU Int 117:598–603. https://doi.org/10.1111/bju.13116

    Article  PubMed  Google Scholar 

  83. Turco S, Frinking P, Wildeboer R et al (2020) Contrast-enhanced ultrasound quantification: from kinetic modeling to machine learning. Ultrasound Med Biol. https://doi.org/10.1016/j.ultrasmedbio.2019.11.008

    Article  PubMed  Google Scholar 

  84. Kondo S, Takagi K, Nishida M et al (2017) Computer-aided diagnosis of focal liver lesions using contrast-enhanced ultrasonography with perflubutane microbubbles. IEEE Trans Med Imaging 36:1427–1437. https://doi.org/10.1109/TMI.2017.2659734

    Article  PubMed  Google Scholar 

  85. Wildeboer RR, Postema AW, Demi L et al (2017) Multiparametric dynamic contrast-enhanced ultrasound imaging of prostate cancer. Eur Radiol 27:3226–3234. https://doi.org/10.1007/s00330-016-4693-8

    Article  PubMed  Google Scholar 

  86. Palmeri ML, Glass TJ, Miller ZA et al (2016) Identifying clinically significant prostate cancers using 3-D in vivo acoustic radiation force impulse imaging with whole-mount histology validation. Ultrasound Med Biol 42:1251–1262. https://doi.org/10.1016/j.ultrasmedbio.2016.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  87. Zhang M, Tang J, Luo Y et al (2019) Diagnostic performance of multiparametric transrectal ultrasound in localized prostate cancer: a comparative study with magnetic resonance imaging. J Ultrasound Med Off J Am Inst Ultrasound Med 38:1823–1830. https://doi.org/10.1002/jum.14878

    Article  Google Scholar 

  88. Rouvière O, Schoots IG, Mottet N (2019) Multiparametric magnetic resonance imaging before prostate biopsy: a chain is only as strong as its weakest link. Eur Urol 75:889–890. https://doi.org/10.1016/j.eururo.2019.03.023

    Article  PubMed  Google Scholar 

  89. Wildeboer RR, Mannaerts CK, van Sloun RJG et al (2020) Automated multiparametric localization of prostate cancer based on B-mode, shear-wave elastography, and contrast-enhanced ultrasound radiomics. Eur Radiol 30:806–815. https://doi.org/10.1007/s00330-019-06436-w

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JMC: Project development, Data collection, Manuscript writing. EH: Project development, Manuscript writing. RB: Project development, Manuscript writing. GS: Manuscript writing. JW: Manuscript writing. SB: Data collection, Manuscript writing. CD: Data collection, Manuscript writing. JR: Project development, Manuscript writing.

Corresponding author

Correspondence to Jean-Michel Correas.

Ethics declarations

Conflict of interest

JM Correas: Speakers fees: Canon MS, General Electric MS, Hitachi MS, Philips Ultrasound, Siemens Ultrasound, Supersonic Imagine. Equipment grants: Canon MS, Hitachi MS, Philips Ultrasound, SuperSonic Imagine. E Halpern: No potential conflict of interest. R Barr: Project development, Manuscript writing. Speakers fees: Philips Ultrasound, Siemens Ultrasound, Mindray, Canon. Equipment grants: Philips Ultrasound, Siemens Ultrasound, Mindray Ultrasound, SuperSonic Imagine, Canon Ultrasound, Samsung Ultrasound, GE Medical Royalties: Thieme Publishers Advisory panel-Samsung Ultrasound. G Sangeet: No potential conflict of interest. J Walz: No potential conflict of interest. S Bodard: No potential conflict of interest. C Dariane: No potential conflict of interest. J de la Rosette: No potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correas, JM., Halpern, E.J., Barr, R.G. et al. Advanced ultrasound in the diagnosis of prostate cancer. World J Urol 39, 661–676 (2021). https://doi.org/10.1007/s00345-020-03193-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-020-03193-0

Keywords

Navigation