Skip to main content
Log in

Hollow droplets impacting onto a solid surface

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The impact process of spherical hollow droplets impinging onto a solid surface has been experimentally studied. Formation of a counter-jet in a wide range of Reynolds and Weber numbers was revealed, this jet being similar to a Worthington jet. For characterizing the regime of liquid flow in the hollow droplet, we propose using the Euler number. Theoretically, the problem was treated using a simple model of axisymmetric liquid flow. The obtained results proved to be consistent with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Eu = P g0/ρU 2p :

Euler number

Re = ρD p U p :

Reynolds number

We = ρD p U 2p :

Weber number

D cont :

Mean diameter of the circumference round which the droplet shell contacts the spreading liquid layer (m)

D p :

Droplet diameter (m)

D s :

Splat diameter (m)

E tot(t), E kin(t), E surf(t):

Total, kinetic, and surface energy of spreading droplet at time t (J)

E visc(t):

Viscous loss of energy in droplet flow by time t (J)

m p :

Droplet mass (kg)

P g0 :

Initial pressure in gas cavity (Pa)

t d = D p /U p :

Characteristic time of droplet deformation (s)

U p :

Droplet velocity (m/s)

U jet :

Counter-jet velocity (m/s)

u z, u r :

Vertical and radial velocities of liquid flow in spreading layer (m/s)

V tot(t):

Total liquid volume having entered the spreading layer by time t (m3)

V disk(t):

Liquid volume having entered the peripheral spreading disk by time t (m3)

μ :

Dynamic viscosity of liquid (Pa s)

ρ :

Liquid density (kg/m3)

σ :

Liquid surface tension (N/m)

Δp :

Droplet shell thickness (m)

δ p = Δp/D p :

Relative droplet shell thickness

β = (1 − 2δ p)3 :

Part of droplet volume occupied by gas

References

  • Benjamin TJ, Ellis AT (1966) The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Phil Trans R Soc Lond A 260(1110):221–240

    Article  Google Scholar 

  • Blake JR, Gibson DC (1987) Cavitation bubbles near boundaries. Annu Rev Fluid Mech 19:99–123

    Article  Google Scholar 

  • Chandra S, Fauchais P (2009) Formation of solid splats during thermal spray deposition. J Therm Spray Tech 18(2):148–180

    Article  Google Scholar 

  • Fantassi S, Vardelle M, Vardelle A, Fauchais P (1993) Influence of the velocity of plasma-sprayed particles on splat formation. J Therm Spray Tech 2(4):379–384

    Article  Google Scholar 

  • Fauchais P, Fukumoto M, Vardelle A, Vardelle M (2004) Knowledge concerning splat formation: an invited review. J Therm Spray Tech 13(3):337–360

    Article  Google Scholar 

  • Grigor’ev IS, Meilikhova EZ (eds) (1991) Physical quantities: a reference book. Energoatomizdat, Moscow (in Russian)

    Google Scholar 

  • Gulyaev IP (2009) Synthesis and processing of hollow particles in plasma flows. Dissertation, Novosibirsk, ITAM SB RAS (in Russian)

  • Gulyaev IP, Solonenko OP, Gulyaev PYu, Smirnov AV (2009) Hydrodynamic features of the impact of a hollow spherical drop on a flat surface. Tech Phys Lett 35(10):885–888

    Article  Google Scholar 

  • Lavrentiev MA (1957) Cumulative charge and principles of its operation. Uspekhi Matematicheskih Nauk 12(4):41–56 (in Russian)

    Google Scholar 

  • Lavrentiev MA, Shabat BV (1977) Hydrodynamic problems and their mathematical models. Nauka, Moscow (in Russian)

    Google Scholar 

  • Madejski J (1976) Solidification of droplets on a cold surface. Heat Mass Transf 19:1009–1013

    Article  MATH  Google Scholar 

  • Mayer BB (1989) Accumulation effect in simple experiments. Nauka, Moskow (in Russian)

    Google Scholar 

  • Moreau C, Cielo P, Lamontagne M, Dallaire S, Vardelle M (1990) Impacting particle temperature monitoring during plasma spray deposition. Meas Sci Technol 1:807–815

    Article  Google Scholar 

  • Moreau C, Cielo P, Lamontagne M (1992) Flattening and solidification of thermally sprayed particles. J Therm Spray Tech 1(4):317–323

    Article  Google Scholar 

  • Ogawa A, Utsuno K, Mutou M, Kouzen S, Shimotake Y, Satou Y (2006) Morphological study of cavity and worthington jet formations for Newtonian and Non-Newtonian liquids. Particul Sci Technol 24(2):181–225

    Article  Google Scholar 

  • Prosperetti A, Oguz HN (1993) The impact of drops on liquid surfaces and the underwater noise of rain. Annu Rev Fluid Mech 25:577–602

    Article  Google Scholar 

  • Rioboo R, Tropea C, Marengo M (2001) Outcomes from a drop impact on solid surfaces. At Sprays 11:155–165

    Google Scholar 

  • Shinoda K, Kojima Y, Yoshida T (2005) In situ measurement system for deformation and solidification phenomena of Yttria-Stabilized Zirconia droplets impinging on quartz glass substrate under plasma-spraying conditions. J Therm Spray Tech 14(4):511–517

    Article  Google Scholar 

  • Shinoda K, Murakami H, Kuroda S, Oki S, Takehara K, Etoh TG (2007) High-speed thermal imaging of Yttria-Stabilized Zirconia droplet impinging on substrate in plasma spraying. Appl Phys Lett 90(19). Article no. 194103

  • Solonenko OP, Mikhalchenko AA, Kartaev EV (2005) Splat formation under YSZ hollow droplet impact onto substrate. In: Proceedings of ITSC’05, 2–4 May, Bazel, Switzerland

  • Solonenko OP, Gulyaev IP, Smirnov AV (2008a) Plasma processing and deposition of powdered metal oxides consisting of hollow spherical particles. Tech Phys Lett 34(12):1050–1052

    Article  Google Scholar 

  • Solonenko OP, Smirnov AV, Gulyaev IP (2008b) Spreading and solidification of hollow molten droplet under its impact onto substrate: computer simulation and experiment. Proceedings of AIP, Melville, New York 982:561–568

    Google Scholar 

  • Solonenko OP, Gulyaev IP, Smirnov AV (2011) Thermal plasma processes for production of hollow spherical powders: theory and Experiment. J Therm Sci Tech 6(2):219–234

    Article  Google Scholar 

  • Thoroddsen ST, Etoh TG, Takehara K (2008) High-speed imaging of drops and bubbles. Annu Rev Fluid Mech 40:257–285

    Article  MathSciNet  Google Scholar 

  • Vardelle M, Vardelle A, Fauchais P, Moreau C (1994) Pyrometer system for monitoring the particle impact on a substrate during a plasma spray process. Meas Sci Technol 5(3):205–212

    Article  Google Scholar 

  • Vardelle M, Vardelle A, Leger AC, Fauchais P, Gobin D (1995) Influence of particle parameters at impact on splat formation and solidification in plasma spraying processes. J Therm Spray Tech 4(1):50–58

    Article  Google Scholar 

  • Worthington AM (1908) A study of splashes. Longmans, Green, London

    Google Scholar 

  • Xu L, Zhang WW, Nagel SR (2005) Drop splashing on a dry smooth surface. Phys Rev Lett 94:184505

    Article  Google Scholar 

  • Yarin AL (2006) Drop impact dynamics: splashing, spreading, receding, bouncing. Annu Rev Fluid Mech 38:159–192

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Gulyaev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulyaev, I.P., Solonenko, O.P. Hollow droplets impacting onto a solid surface. Exp Fluids 54, 1432 (2013). https://doi.org/10.1007/s00348-012-1432-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-012-1432-z

Keywords

Navigation