Skip to main content
Log in

Detection and tracking of vortex phenomena using Lagrangian coherent structures

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The formation and shedding of vortices in two vortex-dominated flows around an actuated flat plate are studied to develop a better method of identifying and tracking coherent structures in unsteady flows. The work automatically processes data from the 2D simulation of a flat plate undergoing a \(45^{\circ }\) pitch-up maneuver, and from experimental particle image velocimetry data in the wake of a continuously pitching trapezoidal panel. The Eulerian \(\varGamma _1\), \(\varGamma _2\), and Q functions, as well as the Lagrangian finite-time Lyapunov exponent are applied to identify both the centers and boundaries of the vortices. The multiple vortices forming and shedding from the plates are visualized well by these techniques. Tracking of identifiable features, such as the Lagrangian saddle points, is shown to have potential to identify the timing and location of vortex formation, shedding, and destruction more precisely than by only studying the vortex cores as identified by the Eulerian techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahuja S, Rowley CW, Kevrekidis IG, Wei M, Colonius T, Tadmor G (2007) In: 45th AIAA aerospace sciences meeting and exhibit, AIAA Paper, vol 709

  • Anderson J, Streitlien K, Barrett D, Triantafyllou M (1998) Oscillating foils of high propulsive efficiency. J Fluid Mech 360:41–72

    Article  MathSciNet  Google Scholar 

  • Arora N, Gupta A, Sanghi S, Aono H, Shyy W (2014) Lift-drag and flow structures associated with the “clap and fling” motion. Phys Fluids (1994-present) 26(7):071906

    Article  Google Scholar 

  • Berson A, Michard M, Blanc-Benon P (2009) Vortex identification and tracking in unsteady flows. C R Mec 337(2):61–67

    Article  Google Scholar 

  • Borazjani I, Sotiropoulos F (2010) On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming. J Exp Biol 213(1):89–107

    Article  Google Scholar 

  • Brunton S, Rowley C (2009) Modeling the unsteady aerodynamic forces on small-scale wings. AIAA Pap 1127:2009

    Google Scholar 

  • Buchholz JH, Smits AJ (2006) On the evolution of the wake structure produced by a low-aspect-ratio pitching panel. J Fluid Mech 546:433–443

    Article  Google Scholar 

  • Buchholz JH, Smits AJ (2008) The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel. J Fluid Mech 603:331–365

    Article  Google Scholar 

  • Cardwell BM, Mohseni K (2008) Vortex shedding over a two-dimensional airfoil: where the particles come from. AIAA J 46(3):545–547

    Article  Google Scholar 

  • Chakraborty P, Balachandar S, Adrian RJ (2005) On the relationships between local vortex identification schemes. J Fluid Mech 535:189–214

    Article  MathSciNet  Google Scholar 

  • Chong M, Perry AE, Cantwell B (1990) A general classification of three-dimensional flow fields. Phys Fluids A Fluid Dyn (1989–1993) 2(5):765–777

    Article  MathSciNet  Google Scholar 

  • Cucitore R, Quadrio M, Baron A (1999) On the effectiveness and limitations of local criteria for the identification of a vortex. Eur J Mech B Fluids 18(2):261–282

    Article  MathSciNet  Google Scholar 

  • Dong H, Mittal R, Najjar F (2006) Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils. J Fluid Mech 566:309–343

    Article  MathSciNet  Google Scholar 

  • Eldredge JD (2007) Numerical simulation of the fluid dynamics of 2D rigid body motion with the vortex particle method. J Comput Phys 221:626–648

    Article  MathSciNet  Google Scholar 

  • Eldredge JD, Chong K (2010) Fluid transport and coherent structures of translating and flapping wings. Interdiscip J Nonlinear Sci 20(1):017509

    Article  MathSciNet  Google Scholar 

  • Ellington C (1984) The aerodynamics of hovering insect flight. IV. Aeorodynamic mechanisms. Philos Trans R Soc B Biol Sci 305(1122):79–113

    Article  Google Scholar 

  • Graftieaux L, Michard M, Grosjean N (2001) Combining PIV. POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas Sci Technol 12(9):1422

    Article  Google Scholar 

  • Green MA, Rowley CW, Haller G (2007) Detection of Lagrangian coherent structures in three-dimensional turbulence. J Fluid Mech 572:111–120

    Article  MathSciNet  Google Scholar 

  • Green MA, Rowley CW, Smits AJ (2010) Using hyperbolic Lagrangian coherent structures to investigate vortices in bioinspired fluid flows. Chaos 20(1):017510

    Article  MathSciNet  Google Scholar 

  • Green MA, Rowley CW, Smits AJ (2011) The unsteady three-dimensional wake produced by a trapezoidal pitching panel. J Fluid Mech 685:117–145

    Article  Google Scholar 

  • Green MA, Smits AJ (2008) Effects of three-dimensionality on thrust production by a pitching panel. J Fluid Mech 615:211–220

    Article  Google Scholar 

  • Haller G (2001) Distinguished material surfaces and coherent structures in 3D fluid flows. Phys D 149:248–277

    Article  MathSciNet  Google Scholar 

  • Haller G (2002) Lagrangian coherent structures from approximate velocity data. Phys Fluids 14(6):1851–1861

    Article  MathSciNet  Google Scholar 

  • Haller G (2005) An objective definition of a vortex. J Fluid Mech 525:1–26

    Article  MathSciNet  Google Scholar 

  • Hunt JCR, Wray A, Moin P (1988) Eddies, stream, and convergence zones in turbulent flows. Center for turbulence research report CTR-S88, pp 193–208

  • Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94

    Article  MathSciNet  Google Scholar 

  • Kaplan S, Altman A, Ol M (2007) Wake vorticity measurements for low aspect ratio wings at low Reynolds number. J Aircr 44(1):241–251

    Article  Google Scholar 

  • Koochesfahani MM (1989) Vortical patterns in the wake of an oscillating airfoil. AIAA J 27(9):1200–1205

    Article  Google Scholar 

  • Lekien F, Shadden SC, Marsden JE (2007) Lagrangian coherent structures in n-dimensional systems. J Math Phys 48(6):065404

    Article  MathSciNet  Google Scholar 

  • Lipinski D, Cardwell B, Mohseni K (2008) A Lagrangian analysis of a two-dimensional airfoil with vortex shedding. J Phys A Math Theor 41(34):344011

    Article  MathSciNet  Google Scholar 

  • Magill J, Bachmann M, Rixon G, McManus K (2003) Dynamic stall control using a model-based observer. J Aircr 40(2):355–362

    Article  Google Scholar 

  • Mathur M, Haller G, Peacock T, Ruppert-Felsot JE, Swinney HL (2007) Uncovering the Lagrangian skeleton of turbulence. Phys Rev Lett 98(14):144502

    Article  Google Scholar 

  • O’Farrell C, Dabiri JO (2014) Pinch-off of non-axisymmetric vortex rings. J Fluid Mech 740:61–96

    Article  Google Scholar 

  • Ol MV, McAuliffe BR, Hanff ES, Scholz U, Kähler C (2005) Comparison of laminar separation bubble measurements on a low Reynolds number airfoil in three facilities. AIAA paper 2005-5149

  • Peng J, Dabiri JO (2008) The ‘upstream wake’ of swimming and flying animals and its correlation with propulsive efficiency. J Exp Biol 211(16):2669–2677

    Article  Google Scholar 

  • Peng J, Dabiri J (2009) Transport of inertial particles by Lagrangian coherent structures: application to predator–prey interaction in jellyfish feeding. J Fluid Mech 623:75–84

    Article  Google Scholar 

  • Pitt Ford C, Babinsky H (2013) Lift and the leading-edge vortex. J Fluid Mech 720:280–313

    Article  MathSciNet  Google Scholar 

  • Ringuette MJ, Milano M, Gharib M (2007) Role of the tip vortex in the force generation of low-aspect-ratio normal flat plates. J Fluid Mech 581:453–468

    Article  Google Scholar 

  • Sane SP (2003) The aerodynamics of insect flight. J Exp Biol 206(23):4191–4208

    Article  Google Scholar 

  • Shadden SC, Dabiri JO, Marsden JE (2006) Lagrangian analysis of fluid transport in empirical vortex ring flows. Phys Fluids (1994-present) 18(4):047105

    Article  MathSciNet  Google Scholar 

  • Shadden SC, Lekien F, Paduan JD, Chavez FP, Marsden JE (2009) The correlation between surface drifters and coherent structures based on high-frequency radar data in Monterey Bay. Deep Sea Res Part II Top Stud Oceanogr 56(3):161–172

    Article  Google Scholar 

  • Smith AC, Baillieul J (2003) In: Decision and control. Proceedings. 42nd IEEE conference on, vol 3 (IEEE, 2003), vol 3, pp 2407–2412

  • Triantafyllou M, Triantafyllou G, Yue D (2000) Hydrodynamics of fishlike swimming. Annu Rev Fluid Mech 32(1):33–53

    Article  MathSciNet  Google Scholar 

  • Videler J, Stamhuis E, Povel G (2004) Leading-edge vortex lifts swifts. Science 306(5703):1960–1962

    Article  Google Scholar 

  • Voth GA, Haller G, Gollub JP (2002) Experimental measurements of stretching fields in fluid mixing. Phys Rev Lett 88(25):254501

    Article  Google Scholar 

  • Wang Z (2000) Vortex shedding and frequency selection in flapping flight. J Fluid Mech 410:323–341

    Article  Google Scholar 

  • Wang C, Eldredge JD (2012) Low-order phenomenological modeling of leading-edge vortex formation. Theor Comput Fluid Dyn 27:577–598

    Article  Google Scholar 

  • Weldon M, Peacock T, Jacobs G, Helu M, Haller G (2008) Experimental and numerical investigation of the kinematic theory of unsteady separation. J Fluid Mech 611:1–11

    Article  Google Scholar 

  • Yang Y, Pullin D (2011) Geometric study of Lagrangian and Eulerian structures in turbulent channel flow. J Fluid Mech 674:67–92

    Article  MathSciNet  Google Scholar 

  • Young J, Lai JC (2007) Vortex lock-in phenomenon in the wake of a plunging airfoil. AIAA J 45(2):485–490

    Article  Google Scholar 

  • Żbikowski R (2002) On aerodynamic modelling of an insect-like flapping wing in hover for micro air vehicles. Philos Trans R Soc Lond A Math Phys Eng Sci 360(1791):273–290

    Article  Google Scholar 

  • Zhou J, Adrian RJ, Balachandar S, Kendall T (1999) Mechanisms for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech 387:353–396

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Dr. Jeff Eldredge and his research group at UCLA are gratefully acknowledged for sharing the database of simulation results for the current research. This work was supported by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-14-1-0210 and by the Office of Naval Research under ONR Award No. N00014-14-1-0418.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangzi Huang.

Additional information

This article belongs to a Topical Collection of articles entitled Extreme Flow Workshop 2014. Guest editors: I. Marusic and B. J. McKeon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Green, M.A. Detection and tracking of vortex phenomena using Lagrangian coherent structures. Exp Fluids 56, 147 (2015). https://doi.org/10.1007/s00348-015-2001-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-015-2001-z

Keywords

Navigation