Skip to main content

Advertisement

Log in

Glia in Drosophila behavior

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Glial cells constitute about 10 % of the Drosophila nervous system. The development of genetic and molecular tools has helped greatly in defining different types of glia. Furthermore, considerable progress has been made in unraveling the mechanisms that control the development and differentiation of Drosophila glia. By contrast, the role of glia in adult Drosophila behavior is not well understood. We here summarize recent work describing the role of glia in normal behavior and in Drosophila models for neurological and behavioral disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andretic R, Chaney S, Hirsh J (1999) Requirement of circadian genes for cocaine sensitization in Drosophila. Science 285:1066–1068

    Article  CAS  PubMed  Google Scholar 

  • Arzberger T, Krampfl K, Leimgruber S, Weindl A (1997) Changes of NMDA receptor subunit (NR1, NR2B) and glutamate transporter (GLT1) mRNA expression in Huntington’s disease–an in situ hybridization study. J Neuropathol Exp Neurol 56:440–454

    Article  CAS  PubMed  Google Scholar 

  • Augustin H, Grosjean Y, Chen K, Sheng Q, Featherstone DE (2007) Nonvesicular release of glutamate by glial xCT transporters suppresses glutamate receptor clustering in vivo. J Neurosci 27:111–123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Awasaki T, Lee T (2011) New tools for the analysis of glial cell biology in Drosophila. Glia 59:1377–1386

    Article  PubMed Central  PubMed  Google Scholar 

  • Awasaki T, Lai SL, Ito K, Lee T (2008) Organization and postembryonic development of glial cells in the adult central brain of Drosophila. J Neurosci 28:13742–13753

    Article  CAS  PubMed  Google Scholar 

  • Awasaki T, Huang Y, O’Connor MB, Lee T (2011) Glia instruct developmental neuronal remodeling through TGF-beta signaling. Nat Neurosci 14:821–823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bainton RJ, Tsai LT, Schwabe T, DeSalvo M, Gaul U, Heberlein U (2005) moody encodes two GPCRs that regulate cocaine behaviors and blood-brain barrier permeability in Drosophila. Cell 123:145–156

    Article  CAS  PubMed  Google Scholar 

  • Behrens PF, Franz P, Woodman B, Lindenberg KS, Landwehrmeyer GB (2002) Impaired glutamate transport and glutamate-glutamine cycling: downstream effects of the Huntington mutation. Brain 125:1908–1922

    Article  CAS  PubMed  Google Scholar 

  • Bellen HJ, Vaessin H, Bier E, Kolodkin A, D’Evelyn D, Kooyer S, Jan YN (1992) The Drosophila couch potato gene: an essential gene required for normal adult behavior. Genetics 131:365–375

    PubMed Central  CAS  PubMed  Google Scholar 

  • Besson MT, Dupont P, Fridell YW, Lievens JC (2010) Increased energy metabolism rescues glia-induced pathology in a Drosophila model of Huntington’s disease. Hum Mol Genet 19:3372–3382

    Article  CAS  PubMed  Google Scholar 

  • Buchanan RL, Benzer S (1993) Defective glia in the Drosophila brain degeneration mutant drop-dead. Neuron 10:839–850

    Article  CAS  PubMed  Google Scholar 

  • Cajal SR (1909) Histologie du système nerveux de l’homme et des vertébrés. Maloine, Paris

    Google Scholar 

  • Callahan LM, Chow N, Cheetham JE, Cox C, Coleman PD (1998) Analysis of message expression in single neurons of Alzheimer’s disease brain. Neurobiol Aging 19:S99–S105

    Article  CAS  PubMed  Google Scholar 

  • Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A, Zara F, Canizares J, Koutnikova H, Bidichandani SI, Gellera C, Brice A, Trouillas P, De Michele G, Filla A, De Frutos R, Palau F, Patel PI, Di Donato S, Mandel JL, Cocozza S, Koenig M, Pandolfo M (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427

    Article  CAS  PubMed  Google Scholar 

  • Campuzano V, Montermini L, Lutz Y, Cova L, Hindelang C, Jiralerspong S, Trottier Y, Kish SJ, Faucheux B, Trouillas P, Authier FJ, Durr A, Mandel JL, Vescovi A, Pandolfo M, Koenig M (1997) Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum Mol Genet 6:1771–1780

    Article  CAS  PubMed  Google Scholar 

  • Claridge-Chang A, Wijnen H, Naef F, Boothroyd C, Rajewsky N, Young MW (2001) Circadian regulation of gene expression systems in the Drosophila head. Neuron 32:657–671

    Article  CAS  PubMed  Google Scholar 

  • Comas D, Petit F, Preat T (2004) Drosophila long-term memory formation involves regulation of cathepsin activity. Nature 430:460–463

    Article  CAS  PubMed  Google Scholar 

  • Curtis AR, Fey C, Morris CM, Bindoff LA, Ince PG, Chinnery PF, Coulthard A, Jackson MJ, Jackson AP, McHale DP, Hay D, Barker WA, Markham AF, Bates D, Curtis A, Burn J (2001) Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet 28:350–354

    Article  CAS  PubMed  Google Scholar 

  • Damulewicz M, Pyza E (2011) The clock input to the first optic neuropil of Drosophila melanogaster expressing neuronal circadian plasticity. PLoS One 6:e21258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dash PK, Blum S, Moore AN (2000) Caspase activity plays an essential role in long-term memory. Neuro Rep 11:2811–2816

    CAS  Google Scholar 

  • De Vries L, Elenko E, McCaffery JM, Fischer T, Hubler L, McQuistan T, Watson N, Farquhar MG (1998a) RGS-GAIP, a GTPase-activating protein for Galphai heterotrimeric G proteins, is located on clathrin-coated vesicles. Mol Biol Cell 9:1123–1134

    Article  PubMed Central  PubMed  Google Scholar 

  • De Vries L, Lou X, Zhao G, Zheng B, Farquhar MG (1998b) GIPC, a PDZ domain containing protein, interacts specifically with the C terminus of RGS-GAIP. Proc Natl Acad Sci USA 95:12340–12345

    Article  PubMed Central  PubMed  Google Scholar 

  • Delatycki MB, Camakaris J, Brooks H, Evans-Whipp T, Thorburn DR, Williamson R, Forrest SM (1999) Direct evidence that mitochondrial iron accumulation occurs in Friedreich ataxia. Ann Neurol 45:673–675

    Article  CAS  PubMed  Google Scholar 

  • Dermaut B, Norga KK, Kania A, Verstreken P, Pan H, Zhou Y, Callaerts P, Bellen HJ (2005) Aberrant lysosomal carbohydrate storage accompanies endocytic defects and neurodegeneration in Drosophila benchwarmer. J Cell Biol 170:127–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • DeZazzo J, Tully T (1995) Dissection of memory formation: from behavioral pharmacology to molecular genetics. Trends Neurosci 18:212–218

    Article  CAS  PubMed  Google Scholar 

  • Doherty J, Logan MA, Tasdemir OE, Freeman MR (2009) Ensheathing glia function as phagocytes in the adult Drosophila brain. J Neurosci 29:4768–4781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dubnau J, Chiang AS, Tully T (2003) Neural substrates of memory: from synapse to system. J Neurobiol 54:238–253

    Article  CAS  PubMed  Google Scholar 

  • Dumstrei K, Wang F, Hartenstein V (2003) Role of DE-cadherin in neuroblast proliferation, neural morphogenesis, and axon tract formation in Drosophila larval brain development. J Neurosci 23:3325–3335

    CAS  PubMed  Google Scholar 

  • Dupont P, Besson MT, Devaux J, Lievens JC (2012) Reducing canonical Wingless/Wnt signaling pathway confers protection against mutant Huntingtin toxicity in Drosophila. Neurobiol Dis 47:237–247

    Article  CAS  PubMed  Google Scholar 

  • Edwards TN, Meinertzhagen IA (2009) Photoreceptor neurons find new synaptic targets when misdirected by overexpressing runt in Drosophila. J Neurosci 29:828–841

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ewer J, Frisch B, Hamblen-Coyle MJ, Rosbash M, Hall JC (1992) Expression of the period clock gene within different cell types in the brain of Drosophila adults and mosaic analysis of these cells’ influence on circadian behavioral rhythms. J Neurosci 12:3321–3349

    CAS  PubMed  Google Scholar 

  • Featherstone DE, Rushton E, Rohrbough J, Liebl F, Karr J, Sheng Q, Rodesch CK, Broadie K (2005) An essential Drosophila glutamate receptor subunit that functions in both central neuropil and neuromuscular junction. J Neurosci 25:3199–3208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferveur JF (2010) Drosophila female courtship and mating behaviors: sensory signals, genes, neural structures and evolution. Curr Opin Neurobiol 20:764–769

    Article  CAS  PubMed  Google Scholar 

  • Freeman MR (2006) Sculpting the nervous system: glial control of neuronal development. Curr Opin Neurobiol 16:119–125

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Manrique-Hoyos N, Voigt A, Schulz JB, Kreutzfeldt M, Merkler D, Simons M (2011) Targeted ablation of oligodendrocytes triggers axonal damage. PLoS One 6:e22735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goodman C, Doe C (eds) (1993) Embryonic development of the Drosophila central nervous system. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Greenspan RJ, Ferveur JF (2000) Courtship in Drosophila. Annu Rev Genet 34:205–232

    Article  CAS  PubMed  Google Scholar 

  • Gregory A, Polster BJ, Hayflick SJ (2009) Clinical and genetic delineation of neurodegeneration with brain iron accumulation. J Med Genet 46:73–80

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grima B, Chelot E, Xia R, Rouyer F (2004) Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature 431:869–873

    Article  CAS  PubMed  Google Scholar 

  • Grosjean Y, Grillet M, Augustin H, Ferveur JF, Featherstone DE (2008) A glial amino-acid transporter controls synapse strength and courtship in Drosophila. Nat Neurosci 11:54–61

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guan Z, Saraswati S, Adolfsen B, Littleton JT (2005) Genome-wide transcriptional changes associated with enhanced activity in the Drosophila nervous system. Neuron 48:91–107

    Article  CAS  PubMed  Google Scholar 

  • Hakim Y, Yaniv SP, Schuldiner O (2014) Astrocytes play a key role in Drosophila mushroom body axon pruning. PLoS One 9:e86178

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Halter DA, Urban J, Rickert C, Ner SS, Ito K, Travers AA, Technau GM (1995) The homeobox gene repo is required for the differentiation and maintenance of glia function in the embryonic nervous system of Drosophila melanogaster. Development 121:317–332

    CAS  PubMed  Google Scholar 

  • Harding AE (1981) Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 104:589–620

    Article  CAS  PubMed  Google Scholar 

  • Hartenstein V (2011) Morphological diversity and development of glia in Drosophila. Glia 59:1237–1252

    Article  PubMed Central  PubMed  Google Scholar 

  • Hassel B, Tessler S, Faull RL, Emson PC (2008) Glutamate uptake is reduced in prefrontal cortex in Huntington’s disease. Neurochem Res 33:232–237

    Article  CAS  PubMed  Google Scholar 

  • Hayashi Y, Kakita A, Yamada M, Koide R, Igarashi S, Takano H, Ikeuchi T, Wakabayashi K, Egawa S, Tsuji S, Takahashi H (1998) Hereditary dentatorubral-pallidoluysian atrophy: detection of widespread ubiquitinated neuronal and glial intranuclear inclusions in the brain. Acta Neuropathol 96:547–552

    Article  CAS  PubMed  Google Scholar 

  • Haydon PG, Blendy J, Moss SJ, Rob Jackson F (2009) Astrocytic control of synaptic transmission and plasticity: a target for drugs of abuse? Neuropharmacology 56(Suppl 1):83–90

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hebb MO, Denovan-Wright EM, Robertson HA (1999) Expression of the Huntington’s disease gene is regulated in astrocytes in the arcuate nucleus of the hypothalamus of postpartum rats. FASEB J 13:1099–1106

    CAS  PubMed  Google Scholar 

  • Hidalgo A, Learte AR, McQuilton P, Pennack J, Zhu B (2006) Neurotrophic and gliatrophic contexts in Drosophila. Brain Behav Evol 68:173–180

    Article  PubMed  Google Scholar 

  • Hidalgo A, Kato K, Sutcliffe B, McIlroy G, Bishop S, Alahmed S (2011) Trophic neuron–glia interactions and cell number adjustments in the fruit fly. Glia 59:1296–1303

    Article  PubMed  Google Scholar 

  • Im SH, Taghert PH (2010) PDF receptor expression reveals direct interactions between circadian oscillators in Drosophila. J Comp Neurol 518:1925–1945

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Isabel G, Pascual A, Preat T (2004) Exclusive consolidated memory phases in Drosophila. Science 304:1024–1027

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Urban J, Technau G (1995) Distribution, classification, and development of Drosophila glial cells in the late embryonic and early larval ventral nerve cord. Roux’s Arch Dev Biol 204:284–307

    Article  Google Scholar 

  • Ito K, Suzuki K, Estes P, Ramaswami M, Yamamoto D, Strausfeld NJ (1998) The organization of extrinsic neurons and their implications in the functional roles of the mushroom bodies in Drosophila melanogaster Meigen. Learn Mem 5:52–77

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jackson FR (2011) Glial cell modulation of circadian rhythms. Glia 59:1341–1350

    Article  PubMed Central  PubMed  Google Scholar 

  • Kazama H, Yaksi E, Wilson RI (2011) Cell death triggers olfactory circuit plasticity via glial signaling in Drosophila. J Neurosci 31:7619–7630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim J, Lee S, Ko S, Kim-Ha J (2010) dGIPC is required for the locomotive activity and longevity in Drosophila. Biochem Biophys Res Commun 402:565–570

    Article  CAS  PubMed  Google Scholar 

  • Klambt C, Goodman CS (1991) The diversity and pattern of glia during axon pathway formation in the Drosophila embryo. Glia 4:205–213

    Article  CAS  PubMed  Google Scholar 

  • Kosmidis S, Botella JA, Mandilaras K, Schneuwly S, Skoulakis EM, Rouault TA, Missirlis F (2011) Ferritin overexpression in Drosophila glia leads to iron deposition in the optic lobes and late-onset behavioral defects. Neurobiol Dis 43:213–219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kretzschmar D, Tschape J, Bettencourt Da Cruz A, Asan E, Poeck B, Strauss R, Pflugfelder GO (2005) Glial and neuronal expression of polyglutamine proteins induce behavioral changes and aggregate formation in Drosophila. Glia 49:59–72

    Article  PubMed  Google Scholar 

  • Kume K, Kume S, Park SK, Hirsh J, Jackson FR (2005) Dopamine is a regulator of arousal in the fruit fly. J Neurosci 25:7377–7384

    Article  CAS  PubMed  Google Scholar 

  • Kurant E, Axelrod S, Leaman D, Gaul U (2008) Six-microns-under acts upstream of Draper in the glial phagocytosis of apoptotic neurons. Cell 133:498–509

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuzina I, Song JK, Giniger E (2011) How Notch establishes longitudinal axon connections between successive segments of the Drosophila CNS. Development 138:1839–1849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lear BC, Merrill CE, Lin JM, Schroeder A, Zhang L, Allada R (2005) A G protein-coupled receptor, groom-of-PDF, is required for PDF neuron action in circadian behavior. Neuron 48:221–227

    Article  CAS  PubMed  Google Scholar 

  • Lehmann FO, Cierotzki V (2010) Locomotor performance in the Drosophila brain mutant drop-dead. Comp Biochem Physiol A Mol Integr Physiol 156:337–343

    Article  PubMed  CAS  Google Scholar 

  • Levi S, Cozzi A, Arosio P (2005) Neuroferritinopathy: a neurodegenerative disorder associated with L-ferritin mutation. Best Pract Res Clin Haematol 18:265–276

    Article  CAS  PubMed  Google Scholar 

  • Lievens JC, Rival T, Iche M, Chneiweiss H, Birman S (2005) Expanded polyglutamine peptides disrupt EGF receptor signaling and glutamate transporter expression in Drosophila. Hum Mol Genet 14:713–724

    Article  CAS  PubMed  Google Scholar 

  • Lievens JC, Iche M, Laval M, Faivre-Sarrailh C, Birman S (2008) AKT-sensitive or insensitive pathways of toxicity in glial cells and neurons in Drosophila models of Huntington’s disease. Hum Mol Genet 17:882–894

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Stormo GD, Taghert PH (2004) The neuropeptide pigment-dispersing factor coordinates pacemaker interactions in the Drosophila circadian system. J Neurosci 24:7951–7957

    Article  CAS  PubMed  Google Scholar 

  • Liu WW, Wilson RI (2013) Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system. Proc Natl Acad Sci USA 110:10294–10299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mahr A, Aberle H (2006) The expression pattern of the Drosophila vesicular glutamate transporter: a marker protein for motoneurons and glutamatergic centers in the brain. Gene Expr Patterns 6:299–309

    Article  CAS  PubMed  Google Scholar 

  • Melom JE, Littleton JT (2013) Mutation of a NCKX eliminates glial microdomain calcium oscillations and enhances seizure susceptibility. J Neurosci 33:1169–1178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakano Y, Fujitani K, Kurihara J, Ragan J, Usui-Aoki K, Shimoda L, Lukacsovich T, Suzuki K, Sezaki M, Sano Y, Ueda R, Awano W, Kaneda M, Umeda M, Yamamoto D (2001) Mutations in the novel membrane protein spinster interfere with programmed cell death and cause neural degeneration in Drosophila melanogaster. Mol Cell Biol 21:3775–3788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Navarro JA, Ohmann E, Sanchez D, Botella JA, Liebisch G, Molto MD, Ganfornina MD, Schmitz G, Schneuwly S (2010) Altered lipid metabolism in a Drosophila model of Friedreich’s ataxia. Hum Mol Genet 19:2828–2840

    Article  CAS  PubMed  Google Scholar 

  • Nelson H, Laughon A (1993) Drosophila glial architecture and development: analysis using a collection of new cell-specific markers. Roux’s Arch Dev Biol 202:341–354

    Article  Google Scholar 

  • Newby LM, Jackson FR (1991) Drosophila ebony mutants have altered circadian activity rhythms but normal eclosion rhythms. J Neurogenet 7:85–101

    Article  CAS  PubMed  Google Scholar 

  • Ng FS, Tangredi MM, Jackson FR (2011) Glial cells physiologically modulate clock neurons and circadian behavior in a calcium-dependent manner. Curr Biol 21:625–634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nitabach MN, Taghert PH (2008) Organization of the Drosophila circadian control circuit. Curr Biol 18:R84–R93

    Article  CAS  PubMed  Google Scholar 

  • Nitabach MN, Wu Y, Sheeba V, Lemon WC, Strumbos J, Zelensky PK, White BH, Holmes TC (2006) Electrical hyperexcitation of lateral ventral pacemaker neurons desynchronizes downstream circadian oscillators in the fly circadian circuit and induces multiple behavioral periods. J Neurosci 26:479–489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ozkaya O, Rosato E (2012) The circadian clock of the fly: a neurogenetics journey through time. Gene Environ Interplay 77:79

    Article  CAS  Google Scholar 

  • Park Y, Caldwell MC, Datta S (1997) Mutation of the central nervous system neuroblast proliferation repressor ana leads to defects in larval olfactory behavior. J Neurobiol 33:199–211

  • Pereanu W, Shy D, Hartenstein V (2005) Morphogenesis and proliferation of the larval brain glia in Drosophila. Dev Biol 283:191–203

    Article  CAS  PubMed  Google Scholar 

  • Pereanu W, Spindler S, Im E, Buu N, Hartenstein V (2007) The emergence of patterned movement during late embryogenesis of Drosophila. Dev Neurobiol 67:1669–1685

  • Peschel N, Veleri S, Stanewsky R (2006) Veela defines a molecular link between Cryptochrome and Timeless in the light-input pathway to Drosophila’s circadian clock. Proc Natl Acad Sci USA 103:17313–17318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petersen AJ, Rimkus SA, Wassarman DA (2012) ATM kinase inhibition in glial cells activates the innate immune response and causes neurodegeneration in Drosophila. Proc Natl Acad Sci USA 109:E656–E664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pyza E, Górska-Andrzejak J (2004) Involvement of glial cells in rhythmic size changes in neurons of the housefly’s visual system. J Neurobiol 59:205–215

    Article  PubMed  Google Scholar 

  • Rassart E, Bedirian A, Do Carmo S, Guinard O, Sirois J, Terrisse L, Milne R (2000) Apolipoprotein D. Biochim Biophys Acta 1482:185–198

    Article  CAS  PubMed  Google Scholar 

  • Renn SC, Park JH, Rosbash M, Hall JC, Taghert PH (1999) A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 99:791–802

    Article  CAS  PubMed  Google Scholar 

  • Richardt A, Rybak J, Störtkuhl KF, Meinertzhagen IA, Hovemann BT (2002) Ebony protein in the Drosophila nervous system: optic neuropile expression in glial cells. J Comp Neurol 452:93–102

    Article  CAS  PubMed  Google Scholar 

  • Richardt A, Kemme T, Wagner S, Schwarzer D, Marahiel MA, Hovemann BT (2003) Ebony, a novel nonribosomal peptide synthetase for beta-alanine conjugation with biogenic amines in Drosophila. J Biol Chem 278:41160–41166

    Article  CAS  PubMed  Google Scholar 

  • Riemensperger T, Isabel G, Coulom H, Neuser K, Seugnet L, Kume K, Iche-Torres M, Cassar M, Strauss R, Preat T, Hirsh J, Birman S (2011) Behavioral consequences of dopamine deficiency in the Drosophila central nervous system. Proc Natl Acad Sci USA 108:834–839

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rival T, Soustelle L, Strambi C, Besson MT, Iche M, Birman S (2004) Decreasing glutamate buffering capacity triggers oxidative stress and neuropil degeneration in the Drosophila brain. Curr Biol 14:599–605

    Article  CAS  PubMed  Google Scholar 

  • Rival T, Soustelle L, Cattaert D, Strambi C, Iche M, Birman S (2006) Physiological requirement for the glutamate transporter dEAAT1 at the adult Drosophila neuromuscular junction. J Neurobiol 66:1061–1074

    Article  CAS  PubMed  Google Scholar 

  • Rival T, Page RM, Chandraratna DS, Sendall TJ, Ryder E, Liu B, Lewis H, Rosahl T, Hider R, Camargo LM, Shearman MS, Crowther DC, Lomas DA (2009) Fenton chemistry and oxidative stress mediate the toxicity of the beta-amyloid peptide in a Drosophila model of Alzheimer’s disease. Eur J Neurosci 29:1335–1347

    Article  PubMed Central  PubMed  Google Scholar 

  • Rotig A, de Lonlay P, Chretien D, Foury F, Koenig M, Sidi D, Munnich A, Rustin P (1997) Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat Genet 17:215–217

    Article  CAS  PubMed  Google Scholar 

  • Rouault TA, Tong WH (2008) Iron-sulfur cluster biogenesis and human disease. Trends Genet 24:398–407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saint Marie RL, Carlson SD (1983) The fine structure of neuroglia in the lamina ganglionaris of the housefly, Musca domestica L. J Neurocytol 12:213–241

    Article  CAS  PubMed  Google Scholar 

  • Sanchez D, Lopez-Arias B, Torroja L, Canal I, Wang X, Bastiani MJ, Ganfornina MD (2006) Loss of glial lazarillo, a homolog of apolipoprotein D, reduces lifespan and stress resistance in Drosophila. Curr Biol 16:680–686

    Article  CAS  PubMed  Google Scholar 

  • Sansone CL, Blumenthal EM (2013) Neurodegeneration in drop-dead mutant Drosophila melanogaster is associated with the respiratory system but not with Hypoxia. PLoS One 8:e68032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmidt I, Thomas S, Kain P, Risse B, Naffin E, Klambt C (2012) Kinesin heavy chain function in Drosophila glial cells controls neuronal activity. J Neurosci 32:7466–7476

    Article  CAS  PubMed  Google Scholar 

  • Schuster CM, Ultsch A, Schmitt B, Betz H (1993) Molecular analysis of Drosophila glutamate receptors. EXS 63:234–240

    CAS  PubMed  Google Scholar 

  • Schwabe T, Bainton RJ, Fetter RD, Heberlein U, Gaul U (2005) GPCR signaling is required for blood-brain barrier formation in Drosophila. Cell 123:133–144

    Article  CAS  PubMed  Google Scholar 

  • Seugnet L, Suzuki Y, Merlin G, Gottschalk L, Duntley SP, Shaw PJ (2011) Notch signaling modulates sleep homeostasis and learning after sleep deprivation in Drosophila. Curr Biol 21:835–840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shafer OT, Kim DJ, Dunbar-Yaffe R, Nikolaev VO, Lohse MJ, Taghert PH (2008) Widespread receptivity to neuropeptide PDF throughout the neuronal circadian clock network of Drosophila revealed by real-time cyclic AMP imaging. Neuron 58:223–237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shaw P (2003) Awakening to the behavioral analysis of sleep in Drosophila. J Biol Rhythms 18:4–11

    Article  PubMed  Google Scholar 

  • Shin JY, Fang ZH, Yu ZX, Wang CE, Li SH, Li XJ (2005) Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J Cell Biol 171:1001–1012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singhrao SK, Thomas P, Wood JD, MacMillan JC, Neal JW, Harper PS, Jones AL (1998) Huntingtin protein colocalizes with lesions of neurodegenerative diseases: an investigation in Huntington’s, Alzheimer’s, and Pick’s diseases. Exp Neurol 150:213–222

    Article  CAS  PubMed  Google Scholar 

  • Siwicki KK, Eastman C, Petersen G, Rosbash M, Hall JC (1988) Antibodies to the period gene product of Drosophila reveal diverse tissue distribution and rhythmic changes in the visual system. Neuron 1:141–150

    Article  CAS  PubMed  Google Scholar 

  • Sonnenfeld MJ, Jacobs JR (1995) Macrophages and glia participate in the removal of apoptotic neurons from the Drosophila embryonic nervous system. J Comp Neurol 359:644–652

    Article  CAS  PubMed  Google Scholar 

  • Spindler SR, Ortiz I, Fung S, Takashima S, Hartenstein V (2009) Drosophila cortex and neuropile glia influence secondary axon tract growth, pathfinding, and fasciculation in the developing larval brain. Dev Biol 334:355–368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stacey SM, Muraro NI, Peco E, Labbe A, Thomas GB, Baines RA, van Meyel DJ (2010) Drosophila glial glutamate transporter Eaat1 is regulated by fringe-mediated notch signaling and is essential for larval locomotion. J Neurosci 30:14446–14457

    Article  CAS  PubMed  Google Scholar 

  • Stoleru D, Peng Y, Agosto J, Rosbash M (2004) Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature 431:862–868

    Article  CAS  PubMed  Google Scholar 

  • Stoleru D, Peng Y, Nawathean P, Rosbash M (2005) A resetting signal between Drosophila pacemakers synchronizes morning and evening activity. Nature 438:238–242

    Article  CAS  PubMed  Google Scholar 

  • Stork T, Engelen D, Krudewig A, Silies M, Bainton RJ, Klambt C (2008) Organization and function of the blood-brain barrier in Drosophila. J Neurosci 28:587–597

    Article  CAS  PubMed  Google Scholar 

  • Stork T, Bernardos R, Freeman MR (2012) Analysis of glial cell development and function in Drosophila. Cold Spring Harb Protoc 2012:1–17

    Article  PubMed  Google Scholar 

  • Strausfeld NJ (1976) Atlas of an insect brain. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Suh J, Jackson FR (2007) Drosophila ebony activity is required in glia for the circadian regulation of locomotor activity. Neuron 55:435–447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Suzuki K, Juni N, Yamamoto D (1997) Enhanced mate refusal in female Drosophila induced by a mutation in the spinster locus. Appl Entomol Zool 32:235–243

    Google Scholar 

  • Tamura T, Sone M, Yamashita M, Wanker EE, Okazawa H (2009) Glial cell lineage expression of mutant ataxin-1 and huntingtin induces developmental and late-onset neuronal pathologies in Drosophila models. PLoS One 4:e4262

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tanenhaus AK, Zhang J, Yin JC (2012) In vivo circadian oscillation of dCREB2 and NF-kappaB activity in the Drosophila nervous system. PLoS ONE 7:e45130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomas GB, van Meyel DJ (2007) The glycosyltransferase Fringe promotes Delta-Notch signaling between neurons and glia, and is required for subtype-specific glial gene expression. Development 134:591–600

    Article  CAS  PubMed  Google Scholar 

  • Tix S, Eule E, Fischbach KF, Benzer S (1997) Glia in the chiasms and medulla of the Drosophila melanogaster optic lobes. Cell Tissue Res 289:397–409

    Article  CAS  PubMed  Google Scholar 

  • Tomancak P, Beaton A, Weiszmann R, Kwan E, Shu S, Lewis SE, Richards S, Ashburner M, Hartenstein V, Celniker SE, Rubin GM (2002) Systematic determination of patterns of gene expression during Drosophila embryogenesis. Genome Biol 3(12):RESEARCH0088

    Article  PubMed Central  PubMed  Google Scholar 

  • Tully T, Preat T, Boynton SC, Del Vecchio M (1994) Genetic dissection of consolidated memory in Drosophila. Cell 79:35–47

    Article  CAS  PubMed  Google Scholar 

  • Ueda HR, Matsumoto A, Kawamura M, Iino M, Tanimura T, Hashimoto S (2002) Genome-wide transcriptional orchestration of circadian rhythms in Drosophila. J Biol Chem 277:14048–14052

    Article  CAS  PubMed  Google Scholar 

  • Ueda A, Grabbe C, Lee J, Palmer RH, Wu CF (2008) Mutation of Drosophila focal adhesion kinase induces bang-sensitive behavior and disrupts glial function, axonal conduction and synaptic transmission. Eur J Neurosci 27:2860–2870

    Article  PubMed Central  PubMed  Google Scholar 

  • Vosshall LB (2000) Olfaction in Drosophila. Curr Opin Neurobiol 10:498–503

    Article  CAS  PubMed  Google Scholar 

  • Walker DW, Muffat J, Rundel C, Benzer S (2006) Overexpression of a Drosophila homolog of apolipoprotein D leads to increased stress resistance and extended lifespan. Curr Biol 16:674–679

    Article  CAS  PubMed  Google Scholar 

  • Wigglesworth V (1959) The histology of the nervous system of an insect, Rhodnius prolixus (Hemiptera) II. Quart J Microsc Sci 3:299–313

    Google Scholar 

  • Xia S, Miyashita T, Fu TF, Lin WY, Wu CL, Pyzocha L, Lin IR, Saitoe M, Tully T, Chiang AS (2005) NMDA receptors mediate olfactory learning and memory in Drosophila. Curr Biol 15:603–615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xun Z, Kaufman TC, Clemmer DE (2008) Proteome response to the panneural expression of human wild-type alpha-synuclein: a Drosophila model of Parkinson’s disease. J Proteome Res 7:3911–3921

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamada M, Sato T, Tsuji S, Takahashi H (2002) Oligodendrocytic polyglutamine pathology in dentatorubral-pallidoluysian atrophy. Ann Neurol 52:670–674

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto D, Koganezawa M (2013) Genes and circuits of courtship behaviour in Drosophila males. Nat Rev Neurosci 14:681–692

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto D, Jallon JM, Komatsu A (1997) Genetic dissection of sexual behavior in Drosophila melanogaster. Annu Rev Entomol 42:551–585

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M, Ueda R, Takahashi K, Saigo K, Uemura T (2006) Control of axonal sprouting and dendrite branching by the Nrg-Ank complex at the neuron–glia interface. Curr Biol 16:1678–1683

    Article  CAS  PubMed  Google Scholar 

  • Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5:863–873

    Article  CAS  PubMed  Google Scholar 

  • Zerr DM, Hall JC, Rosbash M, Siwicki KK (1990) Circadian fluctuations of period protein immunoreactivity in the CNS and the visual system of Drosophila. J Neurosci 10:2749–2762

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors received financial support of VIB, IWT and FWO (grants G.0654.08 and G.0789.14). We are grateful to the anonymous reviewers for their critical input that helped improve this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Callaerts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zwarts, L., Van Eijs, F. & Callaerts, P. Glia in Drosophila behavior. J Comp Physiol A 201, 879–893 (2015). https://doi.org/10.1007/s00359-014-0952-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-014-0952-9

Keywords

Navigation