Skip to main content
Log in

Functional demands of dynamic biological adhesion: an integrative approach

  • Review
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Climbing organisms are constantly challenged to make their way rapidly and reliably across varied and often novel terrain. A diversity of morphologically and mechanically disparate attachment strategies have evolved across widely distributed phylogenetic groups to aid legged animals in scaling these surfaces, notable among them some very impressive adhesive pads. Despite the differences between, for example, the dry fibrillar pads of geckos and the smooth, secretion-aided pads of stick insects, I hypothesize that they face similar functional demands in their environment. I outline three broad criteria defining dynamic biological adhesion: reusability, reversibility, and substrate tolerance. Organismal adhesive pads must be able to attach repeatedly without significant decline in performance, detach easily at will, and adhere strongly to the broadest possible range of surfaces in their habitat. A survey of the literature suggests that evidence for these general principles can be found in existing research, but that many gaps remain to be filled. By taking a comparative, integrative approach to biological dynamic adhesion, rather than focusing on a few model organisms, investigators will continue to discover new and interesting attachment strategies in natural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aksak B, Murphy MP, Sitti M (2007) Adhesion of biologically inspired vertical and angled polymer microfiber arrays. Langmuir 23:3322–3332. doi:10.1021/la062697t

    Article  PubMed  CAS  Google Scholar 

  • Arnold JW (1974) Adaptive features on the tarsi of cockroaches (Insecta: Dictyoptera). Int J Insect Morphol Embryol 3:317–334. doi:10.1016/0020-7322(74)90026-9

  • Asbeck AT, Kim S, Cutkosky MR, Provancher WR, Lanzetta M (2006) Scaling hard vertical surfaces with compliant microspine arrays. Int J Robot Res 25:1165–1179. doi:10.1177/0278364906072511

    Article  Google Scholar 

  • Autumn K (2006) Properties, principles, and parameters of the gecko adhesive system. In: Smith A, Callow J (eds) Biological adhesives. Springer, Berlin, pp 225–255

    Chapter  Google Scholar 

  • Autumn K, Gravish N (2008) Gecko adhesion: evolutionary nanotechnology. Philos Trans R Soc Lond A 366:1575–1590. doi:10.1098/rsta.2007.2173

    Article  CAS  Google Scholar 

  • Autumn K, Liang Y, Hsieh ST, Zesch W, Chan W-P, Kenny TW, Fearing RS, Full RJ (2000) Adhesive force of a single gecko foot-hair. Nature 405:681–685. doi:10.1038/35015073

    Article  PubMed  CAS  Google Scholar 

  • Autumn K, Ryan MJ, Wake DB (2002a) Integrating historical and mechanistic biology enhances the study of adaptation. Q Rev Biol 77:383–408. doi:10.1086/344413

    Article  PubMed  Google Scholar 

  • Autumn K, Sitti M, Liang YA, Peattie AM, Hansen WR, Sponberg S, Kenny TW, Fearing R, Israelachvili JN, Full RJ (2002b) Evidence for van der Waals adhesion in gecko setae. Proc Natl Acad Sci USA 99:12252–12256. doi:10.1073/pnas.192252799

    Article  PubMed  CAS  Google Scholar 

  • Autumn K, Dittmore A, Santos D, Spenko M, Cutkosky M (2006a) Frictional adhesion: a new angle on gecko attachment. J Exp Biol 209:3569–3579. doi:10.1242/jeb.02486

    Article  PubMed  CAS  Google Scholar 

  • Autumn K, Hsieh ST, Dudek DM, Chen J, Chitaphan C, Full RJ (2006b) Dynamics of geckos running vertically. J Exp Biol 209:260–272. doi:10.1242/jeb.01980

    Article  PubMed  CAS  Google Scholar 

  • Autumn K, Majidi C, Groff RE, Dittmore A, Fearing R (2006c) Effective elastic modulus of isolated gecko setal arrays. J Exp Biol 209:3558–3568. doi:10.1242/jeb.02469

    Article  PubMed  CAS  Google Scholar 

  • Barnes WJP (2007) Functional morphology and design constraints of smooth adhesive pads. Mater Res Bull 32:479–485

    CAS  Google Scholar 

  • Barnes WJP, Oines C, Smith JM (2006) Whole animal measurements of shear and adhesive forces in adult tree frogs: insights into underlying mechanisms of adhesion obtained from studying the effects of size and scale. J Comp Physiol A 192:1179–1191. doi:10.1007/s00359-006-0146-1

    Article  Google Scholar 

  • Barnes WJP, Pearman J, Platter J (2008) Application of peeling theory to tree frog adhesion, a biological system with biomimetic implications. Eur Acad Sci E Newsl Sci Technol 1:1–2

    Google Scholar 

  • Barthlott W, Neinhuis C, Cutler D, Ditsch F, Meusel I, Theisen I, Wilhelmi H (1998) Classification and terminology of plant epicuticular waxes. Bot J Linn Soc 126:237–260

    Google Scholar 

  • Betz O (2002) Performance and adaptive value of tarsal morphology in rove beetles of the genus Stenus (Coleoptera, Staphylinidae). J Exp Biol 205:1097–1113

    PubMed  Google Scholar 

  • Betz O, Kolsch G (2004) The role of adhesion in prey capture and predator defence in arthropods. Arthropod Struct Dev 33:3. doi:10.1016/j.asd.2003.10.002

    Article  PubMed  Google Scholar 

  • Beutel RG, Gorb SN (2001) Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. J Zool Syst Evol Res 39:177–207

    Article  Google Scholar 

  • Bhushan B (2007) Adhesion of multi-level hierarchical attachment systems in gecko feet. J Adhes Sci Technol 21:1213–1258. doi:10.1163/156856107782328353

    Article  CAS  Google Scholar 

  • Bohn HF, Federle W (2004) Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proc Natl Acad Sci USA 101:14138–14143. doi:10.1073/pnas.0405885101

    Article  PubMed  CAS  Google Scholar 

  • Bonser RHC (2000) The Young’s modulus of ostrich claw keratin. J Mater Sci Lett 19:1039. doi:10.1023/A:1006786919376

    Article  CAS  Google Scholar 

  • Cartmill M (1985) Climbing. In: Hildebrandt M, Bramble DM, Liem KF, Wake DB (eds) Functional vertebrate morphology. The Belknap Press of Harvard University Press, Cambridge, pp 74–88

    Google Scholar 

  • Chen S, Gao H (2007) Bio-inspired mechanics of reversible adhesion: orientation-dependent adhesion strength for non-slipping adhesive contact with transversely isotropic elastic materials. J Mech Phys Solids 55:1001. doi:10.1016/j.jmps.2006.10.008

    Article  CAS  Google Scholar 

  • Clemente CJ, Federle W (2008) Pushing versus pulling: division of labour between tarsal attachment pads in cockroaches. Proc R Soc Lond B Biol Sci. doi:10.1098/rspb.2007.1660

  • Coddington JA, Levi HW (1991) Systematics and evolution of spiders (Araneae). Annu Rev Ecol Syst 22:565–592

    Article  Google Scholar 

  • Cushing PE, Brookhart JO, Kleebe H-J, Zito G, Payne P (2005) The suctorial organ of the Solifugae (Arachnida, Solifugae). Arthropod Struct Dev 34:397–406. doi:10.1016/j.asd.2005.02.002

    Article  Google Scholar 

  • Dahlquist CA (1966) Tack. In: Eley DD (ed) Adhesion fundamentals and practice. McLaren and Sons Ltd, London, pp 143–151

    Google Scholar 

  • Dai Z, Gorb SN, Schwarz U (2002) Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). J Exp Biol 205:2479–2488

    PubMed  Google Scholar 

  • de Crevoisier G, Fabre P, Corpart J-M, Leibler L (1999) Switchable tackiness and wettability of a liquid crystalline polymer. Science 285:1246–1249. doi:10.1126/science.285.5431.1246

    Article  PubMed  Google Scholar 

  • del Campo A, Arzt E (2007) Design parameters and current fabrication approaches for developing bioinspired dry adhesives. Macromol Biosci 7:118–127. doi:10.1002/mabi.200600214

    Article  PubMed  CAS  Google Scholar 

  • Dickinson MH, Farley CT, Full RJ, Koehl MA, Kram R, Lehman S (2000) How animals move: an integrative view. Science 288:100–106

    Article  PubMed  CAS  Google Scholar 

  • Drechsler P, Federle W (2006) Biomechanics of smooth adhesive pads in insects: influence of tarsal secretion on attachment performance. J Comp Physiol A 192:1213–1222. doi:10.1007/s00359-006-0150-5

    Article  Google Scholar 

  • Emerson SB, Diehl D (1980) Toe pad morphology and mechanisms of sticking in frogs. Biol J Linn Soc 13:199–216. doi:10.1111/j.1095-8312.1980.tb00082.x

    Article  Google Scholar 

  • Endlein T, Federle W (2007) To stick and not getting stuck—detachment control in ants. Comp Biochem Physiol A 146:S121–S122. doi:10.1016/j.cbpa.2007.01.222

    Google Scholar 

  • Ernst VV (1973) The digital pads of the tree frog, Hyla cinerea. I. The epidermis. Tissue Cell 5:83–96. doi:10.1016/S0040-8166(73)80007-2

    Article  PubMed  CAS  Google Scholar 

  • Federle W (2006) Why are so many adhesive pads hairy? J Exp Biol 209:2611–2621. doi:10.1242/jeb.02323

    Article  PubMed  Google Scholar 

  • Federle W, Endlein T (2004) Locomotion and adhesion: dynamic control of adhesive surface contact in ants. Arthropod Struct Dev 33:67–75. doi:10.1016/j.asd.2003.11.001

    Article  PubMed  Google Scholar 

  • Federle W, Rohrseitz K, Hölldobler B (2000) Attachment forces of ants measured with a centrifuge: better ‘wax-runners’ have a poorer attachment to a smooth surface. J Exp Biol 203:505–512

    PubMed  CAS  Google Scholar 

  • Federle W, Brainerd EL, McMahon TA, Holldobler B (2001) Biomechanics of the movable pretarsal adhesive organ in ants and bees. Proc Natl Acad Sci USA 98:6215–6220. doi:10.1073/pnas.111139298

    Article  PubMed  CAS  Google Scholar 

  • Federle W, Riehle M, Curtis ASG, Full RJ (2002) An integrative study of insect adhesion: mechanics and wet adhesion of pretarsal pads in ants. Integr Comp Biol 42:1100–1106. doi:10.1093/icb/42.6.1100

    Article  Google Scholar 

  • Federle W, Baumgartner W, Holldobler B (2004) Biomechanics of ant adhesive pads: frictional forces are rate- and temperature-dependent. J Exp Biol 207:67–74. doi:10.1242/jeb.00523

    Article  PubMed  Google Scholar 

  • Federle W, Barnes W, Baumgartner W, Drechsler P, Smith J (2006) Wet but not slippery: boundary friction in tree frog adhesive toe pads. J R Soc Interface 3:689–697. doi:10.1098/rsif.2006.0135

    Article  PubMed  CAS  Google Scholar 

  • Foelix RF, Chu-Wang IW (1975) The structure of scopula hairs in spiders. In: Proceeding 6th international Arachnida congress. Nederlandse Entomologische Vereniging, Amsterdam, pp 156–157

  • Fuller KNG, Tabor D (1975) The effect of surface roughness on the adhesion of elastic solids. Proc R Soc Lond A Math Phys Sci 345:327–342

    Article  Google Scholar 

  • Gao H, Yao H (2004) Shape insensitive optimal adhesion of nanoscale fibrillar structures. Proc Natl Acad Sci USA 101:7851–7856. doi:10.1073/pnas.0400757101

    Article  PubMed  CAS  Google Scholar 

  • Gao H, Wang X, Yao H, Gorb S, Arzt E (2005) Mechanics of hierarchical adhesion structures of geckos. Mech Mater 37:275–285. doi:10.1016/j.mechmat.2004.03.008

    Article  Google Scholar 

  • Geim AK, Dubonos SV, Grigorieva IV, Novoselov KS, Zhukov AA, Shapoval SY (2003) Microfabricated adhesive mimicking gecko foot-hair. Nat Mater 2:461–463. doi:10.1038/nmat917

    Article  PubMed  CAS  Google Scholar 

  • Gillett JD, Wigglesworth VB (1932) The climbing organ of an insect, Rhodnius prolixus (Hemiptera, Reduviidae). Proc R Soc Lond B Biol Sci 111:364–376

    Article  Google Scholar 

  • Glassmaker NJ, Jagota A, Hui C-Y, Kim J (2004) Design of biomimetic fibrillar interfaces: 1. Making contact. J R Soc Interface 1:23–33. doi:10.1098/rsif.2004.0004

    Article  PubMed  CAS  Google Scholar 

  • Glassmaker NJ, Jagota A, Hui C-Y, Noderer WL, Chaudhury MK (2007) Biologically inspired crack trapping for enhanced adhesion. Proc Natl Acad Sci USA 104:10786–10791. doi:10.1073/pnas.0703762104

    Article  PubMed  CAS  Google Scholar 

  • Goldman DI, Chen TS, Dudek DM, Full RJ (2006) Dynamics of rapid vertical climbing in cockroaches reveals a template. J Exp Biol 209:2990–3000. doi:10.1242/jeb.02322

    Article  PubMed  Google Scholar 

  • Goodwyn PP, Peressadko A, Schwarz H, Kastner V, Gorb S (2006) Material structure, stiffness, and adhesion: why attachment pads of the grasshopper (Tettigonia viridissima) adhere more strongly than those of the locust (Locusta migratoria) (Insecta: Orthoptera). J Comp Physiol A 192:1233–1243. doi:10.1007/s00359-006-0156-z

    Article  Google Scholar 

  • Gorb S, Scherge M (2000) Biological microtribology: anisotropy in frictional forces of orthopteran attachment pads reflects the ultrastructure of a highly deformable material. Proc R Soc Lond B Biol Sci 267:1239–1244

    Article  CAS  Google Scholar 

  • Gorb S, Jiao Y, Scherge M (2000) Ultrastructural architecture and mechanical properties of attachment pads in Tettigonia viridissima (Orthoptera Tettigoniidae). J Comp Physiol A 186:821–831. doi:10.1007/s003590000135

    Article  PubMed  CAS  Google Scholar 

  • Gorb S, Varenberg M, Peressadko A, Tuma J (2007) Biomimetic mushroom-shaped fibrillar adhesive microstructure. J R Soc Interface 4:271–275. doi:10.1098/rsif.2006.0164

    Article  PubMed  CAS  Google Scholar 

  • Gravish N, Wilkinson M, Autumn K (2008) Frictional and elastic energy in gecko adhesive detachment. J R Soc Interface 5:339–348. doi:10.1098/rsif.2007.1077

    Article  PubMed  Google Scholar 

  • Green DM (1981) Adhesion and the toe-pads of treefrogs. Copeia 1981:790–796

    Article  Google Scholar 

  • Haas F, Gorb S (2004) Evolution of locomotory attachment pads in the Dermaptera (Insecta). Arthropod Struct Dev 33:45. doi:10.1016/j.asd.2003.11.003

    Article  PubMed  Google Scholar 

  • Hanna G, Barnes WJP (1991) Adhesion and detachment of the toe pads of tree frogs. J Exp Biol 155:103–125

    Google Scholar 

  • Hansen WR, Autumn K (2005) Evidence for self-cleaning in gecko setae. Proc Natl Acad Sci USA 102:385–389. doi:10.1073/pnas.0408304102

    Article  PubMed  CAS  Google Scholar 

  • Hui C-Y, Glassmaker NJ, Tang T, Jagota A (2004) Design of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion. J R Soc Interface 1:35–48. doi:10.1098/rsif.2004.0005

    Article  PubMed  Google Scholar 

  • Hui CY, Glassmaker NJ, Jagota A (2005) How compliance compensates for surface roughness in fibrillar adhesion. J Adhes 81:699–721. doi:10.1080/00218460500187673

    Article  CAS  Google Scholar 

  • Hui C-Y, Shen L, Jagota A, Autumn K (2006) Mechanics of anti-fouling or self-cleaning in gecko setae. In: 29th annual meeting of the Adhesion Society. Adhesion Society, Jacksonville, pp 29–31

  • Jagota A, Bennison SJ (2002) Mechanics of adhesion through a fibrillar microstructure. Integr Comp Biol 42:1140–1145. doi:10.1093/icb/42.6.1140

    Article  Google Scholar 

  • Jusufi A, Goldman DI, Revzen S, Full RJ (2008) Active tails enhance arboreal acrobatics in geckos. Proc Natl Acad Sci USA 105:4215–4219. doi:10.1073/pnas.0711944105

    Article  PubMed  CAS  Google Scholar 

  • Kim TW, Bhushan B (2007) Adhesion analysis of multi-level hierarchical attachment system contacting with a rough surface. J Adhes Sci Technol 21:1–20

    Article  CAS  Google Scholar 

  • Kim TW, Bhushan B (2008) The adhesion model considering capillarity for gecko attachment system. J R Soc Interface 5:319–327. doi:10.1098/rsif.2007.1078

    Article  PubMed  Google Scholar 

  • Kim S, Spenko M, Trujillo S, Heyneman B, Santos D, Cutkosky MR (2008) Smooth vertical surface climbing with directional adhesion. IEEE Trans Robot 24:1–10

    Article  Google Scholar 

  • Klann AE, Gromov AV, Cushing PE, Peretti AV, Alberti G (2008) The anatomy and ultrastructure of the suctorial organ of Solifugae (Arachnida). Arthropod Struct Dev 37:3–12. doi:10.1016/j.asd.2007.04.001

    Article  PubMed  CAS  Google Scholar 

  • Kustandi TS, Samper VD, Ng WS, Chong AS, Gao H (2007) Fabrication of a gecko-like hierarchical fibril array using a bonded porous alumina template. J Micromech Microeng 17:N75–N81. doi:10.1088/0960-1317/17/10/N02

    Article  CAS  Google Scholar 

  • Lamblet M, Verneuil E, Vilmin T, Buguin A, Silberzan P, Leger L (2007) Adhesion enhancement through micropatterning at polydimethylsiloxane–acrylic adhesive interfaces. Langmuir 23:6966–6974. doi:10.1021/la063104h

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Majidi C, Schubert B, Fearing RS (2008) Sliding-induced adhesion of stiff polymer microfibre arrays. I. Macroscale behaviour. J R Soc Interface 5:835–844. doi:10.1098/rsif.2007.1308

    Article  PubMed  Google Scholar 

  • Lees AD, Hardie J (1988) The organs of adhesion in the aphid Megoura viciae. J Exp Biol 136:209–228

    Google Scholar 

  • Majidi C, Groff RE, Maeno Y, Schubert B, Baek S, Bush B, Maboudian R, Gravish N, Wilkinson M, Autumn K, Fearing RS (2006) High friction from a stiff polymer using microfiber arrays. Phys Rev Lett 97:076103. doi:10.1103/PhysRevLett.97.076103

    Article  PubMed  CAS  Google Scholar 

  • Mizutani K, Egashira K, Toukai T, Ogushi J (2006) Adhesive force of a spider mite, Tetranychus urticae, to a flat smooth surface. JSME Int J Ser C 49:539–544. doi:10.1299/jsmec.49.539

    Article  Google Scholar 

  • Nachtigall W (1974) Biological mechanisms of attachment. Springer, Berlin

    Google Scholar 

  • Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot 79:667–677

    Article  Google Scholar 

  • Noderer WL, Shen L, Vajpayee S, Glassmaker NJ, Jagota A, Hui CY (2007) Enhanced adhesion and compliance of film-terminated fibrillar surfaces. Proc R Soc Lond A Math Phys Sci 463:2631–2654. doi:10.1098/rspa.2007.1891

    Article  Google Scholar 

  • Northen MT, Turner KL (2006) Meso-scale adhesion testing of integrated micro- and nano-scale structures. Sensor Actuators A Phys 130/131:583–587. doi:10.1016/j.sna.2005.10.032

    Article  CAS  Google Scholar 

  • Orso S, Wegst UGK, Eberl C, Arzt E (2006) Micrometer-scale tensile testing of biological attachment devices. Adv Mater 18:874–877. doi:10.1002/adma.200501807

    Article  CAS  Google Scholar 

  • Peattie AM, Full RJ (2007) Phylogenetic analysis of the scaling of wet and dry biological fibrillar adhesives. Proc Natl Acad Sci USA 104:18595–18600. doi:10.1073/pnas.0707591104

    Article  PubMed  CAS  Google Scholar 

  • Peattie AM, Majidi C, Corder AB, Full RJ (2007) Ancestrally high elastic modulus of gecko setal β-keratin. J R Soc Interface 4:1071–1076. doi:10.1098/rsif.2007.0226

    Article  PubMed  Google Scholar 

  • Pesika NS, Tian Y, Zhao B, Rosenberg K, Zeng H, McGuiggan P, Autumn K, Israelachvili JN (2007) Peel-zone model of tape peeling based on the gecko adhesive system. J Adhes 83:383–401. doi:10.1080/00218460701282539

    Article  CAS  Google Scholar 

  • Platter J, Pearman J, Barnes J (2007) How do tree frogs adhere well to smooth surfaces and yet detach easily when necessary? Comp Biochem Physiol A 146:S123. doi:10.1016/j.cbpa.2007.01.227

    Google Scholar 

  • Pohl H, Beutel RG (2004) Fine structure of adhesive devices of Strepsiptera (Insecta). Arthropod Struct Dev 33:31–43. doi:10.1016/j.asd.2003.10.001

    Article  PubMed  Google Scholar 

  • Porwal PK, Hui CY (2008) Strength statistics of adhesive contact between a fibrillar structure and a rough substrate. J R Soc Interface 5:441–448. doi:10.1098/rsif.2007.1133

    Article  PubMed  Google Scholar 

  • Ruibal R, Ernst V (1965) The structure of the digital setae of lizards. J Morphol 117:271–294

    Article  PubMed  CAS  Google Scholar 

  • Russell AP (1972) The foot of gekkonid lizards: a study in comparative and functional anatomy. PhD thesis, University of London

  • Russell AP (1975) A contribution to the functional morphology of the foot of the tokay, Gekko gecko (Reptilia, Gekkonidae). J Zool (Lond) 176:437–476

    Google Scholar 

  • Russell AP (1979) Parallelism and integrated design in the foot structure of gekkonine and diplodactyline geckos. Copeia 1979:1–21

    Article  Google Scholar 

  • Russell AP, Johnson MK (2007) Real-world challenges to, and capabilities of, the gekkotan adhesive system: contrasting the rough and the smooth. Can J Zool 85:1228–1238. doi:10.1139/Z07-103

    Article  Google Scholar 

  • Santos D, Sangbae K, Spenko M, Parness A, Cutkosky M (2007) Directional adhesive structures for controlled climbing on smooth vertical surfaces. In: 2007 IEEE international conference on robotics and automation, Roma, Italy, 10–14 April 2007, pp 1262–1267

  • Scholz I, Baumgartner W, Federle W (2008) Micromechanics of smooth adhesive organs in stick insects: pads are mechanically anisotropic and softer towards the adhesive surface. J Comp Physiol A. doi:10.1007/s00359-008-0314-6

  • Sitti M, Fearing R (2002) Nanomolding based fabrication of synthetic gecko foot-hairs. In: 2nd IEEE conference on nanotechnology (IEEE-NANO 2002), Washington, DC, August 2002. IEEE Press, Piscataway, pp 137–140

  • Sitti M, Fearing RS (2003) Synthetic gecko foot-hair micro/nano-structures as dry adhesives. J Adhes Sci Technol 17:1055–1073. doi:10.1163/156856103322113788

    Article  CAS  Google Scholar 

  • Spagna JC, Goldman DI, Lin PC, Koditschek DE, Full RJ (2007) Distributed mechanical feedback in arthropods and robots simplifies control of rapid running on challenging terrain 2:9–18. doi:10.1088/1748-3182/2/1/002

    CAS  Google Scholar 

  • Sponberg S, Full RJ (2008) Neuromechanical response of musculo-skeletal structures in cockroaches during rapid running on rough terrain. J Exp Biol 211:433–446. doi:10.1242/jeb.012385

    Article  PubMed  CAS  Google Scholar 

  • Stork NE (1980) A scanning electron microscope study of tarsal adhesive setae in the Coleoptera. Zool J Linn Soc 68:173–306

    Article  Google Scholar 

  • Stork NE (1983) The adherence of beetle tarsal setae to glass. J Nat Hist 17:583–597

    Article  Google Scholar 

  • Tang T, Hui C, Glassmaker N (2005) Can a fibrillar interface be stronger and tougher than a non-fibrillar one? J R Soc Interface 2:505–516. doi:10.1098/rsif.2005.0070

    Article  PubMed  Google Scholar 

  • Tian Y, Pesika N, Zeng H, Rosenberg K, Zhao B, McGuiggan P, Autumn K, Israelachvili J (2006) Adhesion and friction in gecko toe attachment and detachment. Proc Natl Acad Sci USA 103(51):19320–19325. doi:10.1073/pnas.0608841103

    Article  PubMed  CAS  Google Scholar 

  • Vincent JFV, Wegst UGK (2004) Design and mechanical properties of insect cuticle. Arthropod Struct Dev 33:187–199. doi:10.1016/j.asd.2004.05.006

    Article  PubMed  Google Scholar 

  • Voigt D, Schuppert JM, Dattinger S, Gorb SN (2008) Sexual dimorphism in the attachment ability of the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) to rough substrates. J Insect Physiol. doi:10.1016/j.jinsphys.2008.02.006

  • Vötsch W, Nicholson G, Mueller R, Stierhof YD, Gorb S, Schwarz U (2002) Chemical composition of the attachment pad secretion of the locust Locusta migratoria. Insect Biochem Mol Biol 32:1605–1613. doi:10.1016/S0965-1748(02)00098-X

    Article  PubMed  Google Scholar 

  • Walker G, Yule AB, Ratcliffe J (1985) The adhesive organ of the blowfly, Calliphoa vomitoria: a functional approach (Diptera: Calliphoridae). J Zool (Lond) 205:297–307

    Google Scholar 

  • Williams EE, Peterson JA (1982) Convergent and alternative designs in the digital adhesive pads of scincid lizards. Science 215:1509–1511. doi:10.1126/science.215.4539.1509

    Article  PubMed  Google Scholar 

  • Wu CW, Kong XQ, Diane W (2007) Micronanostructures of the scales on a mosquito’s legs and their role in weight support. Phys Rev E 76:017301. doi:10.1103/PhysRevE.76.017301

    Article  CAS  Google Scholar 

  • Xie T, Xiao X (2008) Self-peeling reversible dry adhesive system. Chem Mater 20:2866–2868. doi:10.1021/cm800173c

    Article  CAS  Google Scholar 

  • Yurdumakan B, Raravikar NR, Ajayan PM, Dhinojwala A (2005) Synthetic gecko foot-hairs from multiwalled carbon nanotubes. Chem Commun 2005:3799–3801. doi:10.1039/b506047h

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Kellar Autumn, Jon Barnes, Walter Federle, Robert Full, Anthony Russell, and the Insect Biomechanics Lab (University of Cambridge) for the many discussions that informed this review. Several anonymous reviewers contributed to the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne M. Peattie.

Additional information

Communicated by I. D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peattie, A.M. Functional demands of dynamic biological adhesion: an integrative approach. J Comp Physiol B 179, 231–239 (2009). https://doi.org/10.1007/s00360-008-0310-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-008-0310-8

Keywords

Navigation