Skip to main content
Log in

Taurine depresses cardiac contractility and enhances systemic heart glucose utilization in the cuttlefish, Sepia officinalis

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Taurine is the most abundant amino acid in the blood of the cuttlefish, Sepia officinalis, where levels can exceed 200 mmol L−1. In mammals, intracellular taurine modulates cardiac Ca2+ handling and carbohydrate metabolism at much lower concentrations but it is not clear if it exerts similar actions in cephalopods. Blood Ca2+ levels are high in cephalopods and we hypothesized that taurine would depress cardiac Ca2+ flux and modulate contractility in systemic and branchial hearts of cuttlefish. Heart performance was assessed with an in situ perfused systemic heart preparation and contractility was evaluated using isometrically contracting systemic and branchial heart muscle rings. Stroke volume, cardiac output, and Ca2+ sensitivity were significantly lower in systemic hearts perfused with supplemental taurine (100 mmol L−1) than in controls. In muscle ring preparations, taurine impaired relaxation at high contraction frequencies, an effect abolished by supra-physiological Ca2+ levels. Taurine did not affect oxygen consumption in non-contracting systemic heart muscle, but extracellular glucose utilization was twice that of control preparations. Collectively, our results suggest that extracellular taurine depresses cardiac Ca2+ flux and potentiates glucose utilization in cuttlefish. Variations in taurine levels may represent an important mechanism for regulating cardiovascular function and metabolism in cephalopods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agnisola C, Houlihan DF (1991) Oxygen supply and in vitro performance of the systemic heart of Octopus vulgaris: effects of haemocyanin. J Exp Biol 157:523–541

    CAS  Google Scholar 

  • Altimiras J, Hove-Madsen L, Gesser H (1999) Ca2+ uptake in the sarcoplasmic reticulum from the systemic heart of octopod cephalopods. J Exp Biol 202:2531–2537

    PubMed  CAS  Google Scholar 

  • Ballantyne IS, Hochachka PW, Mommsen TP (1981) Studies on the metabolism of the migratory squid, Loligo opalescens: enzymes of tissues and heart mitochondria. Mar Biol Lett 2:75–85

    CAS  Google Scholar 

  • Bergmeyer HU, Gawehn K, Grassl M (1974) Enzymes as biochemical reagents. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 1. Academic Press, New York, pp 425–522

    Google Scholar 

  • Bourne GB (1982) Blood pressure in the squid, Loligo pealei. Comp Biochem Physiol 72A:23–27

    Article  Google Scholar 

  • De la Puerta C, Arrieta FJ, Balsa JA, Botella-Carretero JI, Zamarrón I, Vázquez C (2010) Taurine and glucose metabolism: a review. Nutr Hosp 25:910–919

    PubMed  Google Scholar 

  • Devlin CL (1993a) An analysis of control of the ventricle of the mollusc Mercenaria mercenaria. I. The ionic basis of autorhythmicity. J Exp Biol 179:47–61

    CAS  Google Scholar 

  • Devlin CL (1993b) An analysis of control of the ventricle of the mollusc Mercenaria mercenaria. II. Ionic mechanisms involved in excitation by 5-hydroxytryptamine. J Exp Biol 179:63–75

    CAS  Google Scholar 

  • Dieni CA, Callaghan NI, Gormley PT, Butler KMA, MacCormack TJ (2014) Physiological hepatic response to zinc oxide nanoparticle exposure in the white sucker, Catostomus commersonii. Comp Biochem Physiol 162C:51–61

    Google Scholar 

  • Driedzic WR (1985) Contractile performance of cephalopod hearts under anoxic conditions. J Exp Biol 117:471–474

    Google Scholar 

  • Driedzic WR, Sidell BD, Stewart JM, Johnston IA (1990) Maximal activities of enzymes of energy metabolism in cephalopod systemic and branchial hearts. Physiol Zool 63:615–629

    Article  Google Scholar 

  • Foti L, Genoino IT, Agnisola G (1985) In vitro cardiac performance in Octopus vulgaris (Lam). Comp Biochem Physiol 82C:483–488

    CAS  Google Scholar 

  • Franconi F, Martini F, Stendardi I, Matucci R, Zilletti L, Giotti A (1982) Effect of taurine on calcium levels and contractility in guinea-pig ventricular strips. Biochem Pharmacol 31:3181–3185

    Article  PubMed  CAS  Google Scholar 

  • Gesser H, Driedzic WR, Rantin FT, de Freitas JC (1997) Ca2+ regulation of heart contractility in Octopus. J Comp Physiol B 167:474–480

    Article  CAS  Google Scholar 

  • Gutowska MA, Melzner F, Langenbuch M, Bock C, Claireaux G, Pörtner H-O (2010) Acid–base regulatory ability of the cephalopod (Sepia officinalis) in response to environmental hypercapnia. J Comp Physiol B 180:323–335

    Article  PubMed  CAS  Google Scholar 

  • Hochachka PW, Mommsen TP, Storey J, Storey KB, Johansen K, French CJ (1983) The relationship between arginine and proline metabolism in cephalopods. Mar Biol Lett 4:1–21

    CAS  Google Scholar 

  • Hoeger U, Mommsen TP (1985) Role of free amino acids in the oxidative metabolism of cephalopod hearts. In: Gilles R (ed) Circulation, respiration, and metabolism. Current comparative approaches. Springer, Berlin, pp 367–376

    Chapter  Google Scholar 

  • Houlihan DF, Agnisola C, Hamilton NM, Genoino IT (1987) Oxygen consumption of the isolated heart of Octopus: effects of power output and hypoxia. J Exp Biol 131:137–157

    Google Scholar 

  • Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163

    PubMed  CAS  Google Scholar 

  • Imae M, Asano T, Murakami S (2014) Potential role of taurine in the prevention of diabetes and metabolic syndrome. Amino Acids 46:81–88

    Article  PubMed  CAS  Google Scholar 

  • Johansen K, Martin AW (1962) Circulation in the cephalopod, Octopus dofleini. Comp Biochem Physiol 5:161–176

    Article  PubMed  CAS  Google Scholar 

  • King AJ, Adamo SA (2006) The ventilatory, cardiac and behavioural responses of resting cuttlefish (Sepia officinalis L.) to sudden visual stimuli. J Exp Biol 209:1101–1111

    Article  PubMed  Google Scholar 

  • Kling G, Schipp R (1987) Comparative ultrastructural and cytochemical analysis of the cephalopod systemic heart and its innervation. Experientia 43:502–511

    Article  Google Scholar 

  • Lamarre SG, Ditlecadet D, McKenzie DJ, Bonnaud L, Driedzic WR (2012) Mechanisms of protein degradation in mantle muscle and proposed gill remodeling in starved Sepia officinalis. Am J Physiol 303:R427–R437

    Article  CAS  Google Scholar 

  • Lampson WG, Kramer JH, Schaffer SW (1983) Potentiation of the actions of insulin by taurine. Can J Physiol Pharmacol 61:457–463

    Article  PubMed  CAS  Google Scholar 

  • Lewbart GA (2006) Invertebrate medicine. Blackwell Publishing, Ames, p 356

    Book  Google Scholar 

  • Maturo J, Kulakowski EC (1988) Taurine binding to the purified insulin receptor. Biochem Pharmacol 37:3755–3760

    Article  PubMed  CAS  Google Scholar 

  • Melzner F, Bock C, Pörtner H-O (2007) Coordination between ventilatory pressure oscillations and venous return in the cephalopod Sepia officinalis under control conditions, spontaneous exercise and recovery. J Comp Physiol B 177:1–17

    Article  PubMed  Google Scholar 

  • Mommsen TP, Hochachka PW (1981) Respiratory and enzymatic properties of squid heart mitochondria. Eur J Biochem 120:345–350

    Article  PubMed  CAS  Google Scholar 

  • O’Dor RK, Webber DM (1986) The constraints on cephalopods: why squid aren’t fish. Can J Zool 64:1591–1605

    Article  Google Scholar 

  • Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    Article  PubMed  CAS  Google Scholar 

  • Öz E, Erbaş D, Gelir E, Arıcıoğlu A (1999) Taurine and calcium interaction in protection of myocardium exposed to ischemic reperfusion injury. Gen Pharmacol 33:137–141

    Article  PubMed  Google Scholar 

  • Pertseva MN, Shpakov AO, Plesneva SA, Kuznetsova LA (2003) A novel view on the mechanisms of action of insulin and other insulin superfamily peptides: involvement of adenylyl cyclase signaling system. Comp Biochem Physiol 134B:11–36

    Article  CAS  Google Scholar 

  • Robertson JD (1953) Further studies on ionic regulation in marine invertebrates. J Exp Biol 30:277–296

    CAS  Google Scholar 

  • Satoh H (1994) Cardioprotective actions of taurine against intracellular and extracellular calcium-induced effects. In: Huxtable RJ, Michalk D (eds) Taurine in health and disease. Springer Science + Business Media, New York, pp 181–196

    Chapter  Google Scholar 

  • Satoh H, Nakatani T, Tanaka T, Haga S (2002) Cardiac functions and taurine’s actions at different extracellular calcium concentrations in forced swimming stress-loaded rats. Biol Trace Element Res 87:171–182

    Article  CAS  Google Scholar 

  • Schaffer SW, Jong CJ, Ramila KC, Azuma J (2010) Physiological roles of taurine in heart and muscle. J Biomed Sci 17(Suppl 1):S2

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaffer SW, Jong CJ, Ito T, Azuma J (2014) Effect of taurine on ischemia–reperfusion injury. Amino Acids 46:21–30

    Article  PubMed  CAS  Google Scholar 

  • Shaffer J, Kocsis J (1981) Taurine mobilizing effects of beta alanine and other inhibitors of taurine transport. Life Sci 28:2727–2736

    Article  PubMed  CAS  Google Scholar 

  • Shiels HA, White E (2008) The Frank-Starling mechanism in vertebrate cardiac myocytes. J Exp Biol 211:2005–2013

    Article  PubMed  Google Scholar 

  • Smith PJS (1981) The role of venous pressure in regulation of output from the heart of the octopus, Eledone cirrhosa (Lam.). J Exp Biol 93:243–255

    Google Scholar 

  • Storey KB, Storey JM, Johansen K, Hochachka PW (1979) Octopine metabolism in Sepia officinalis: effect of hypoxia and metabolite load on the blood levels of octopine and related compounds. Can J Zool 57:2331–2336

    Article  CAS  Google Scholar 

  • Sykes AV, Domingues PM, Andrade JP (2014) European cuttlefish, Sepia officinalis. In: Iglesias J, Fuentes L, Villanueva R (eds) Cephalopod culture. Springer, Netherlands, pp 175–204

    Chapter  Google Scholar 

  • Vislie T (1983) Cell volume regulation in fish heart ventricles with special reference to taurine. Comp Biochem Physiol 76A:507–514

    Article  Google Scholar 

  • Wells MJ (1979) The heartbeat of Octopus vulgaris. J Exp Biol 78:87–104

    Google Scholar 

  • Wells MJ (1980) Nervous control of the heartbeat in Octopus. J Exp Biol 85:111–128

    PubMed  CAS  Google Scholar 

  • Wells MJ, Wells J (1983) The circulatory response to acute hypoxia in Octopus. J Exp Biol 104:59–71

    Google Scholar 

  • Zhao X, Jia J, Lin Y (1998) Taurine content in Chinese food and daily taurine intake of Chinese men. In: Schaffer S, Lombardini JB, Huxtable RJ (eds) Taurine 3: cellular and regulatory mechanisms. Springer Science + Business Media, New York, pp 501–505

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Juan Fuentes, Mr. João Reis and the students and staff at Ramalhete Station for valuable input and logistical assistance with the study. TJM and WRD were supported by Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery grants. WRD holds the Canada Research Chair in Marine Bioscience. AVS was supported by Fundação para a Ciência e a Tecnologia through Programa Investigador FCT 2014 (IF/00576/2014) and project SEPIATECH (31-03-05-FEP-2) funded by the Portuguese Government Program PROMAR. NIC was supported by an NSERC CGS-M award and a New Brunswick Innovation Foundation graduate fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tyson J. MacCormack.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacCormack, T.J., Callaghan, N.I., Sykes, A.V. et al. Taurine depresses cardiac contractility and enhances systemic heart glucose utilization in the cuttlefish, Sepia officinalis . J Comp Physiol B 186, 215–227 (2016). https://doi.org/10.1007/s00360-015-0946-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-015-0946-0

Keywords

Navigation