Skip to main content
Log in

Estimation of reliability in a multicomponent stress–strength model based on a bivariate Kumaraswamy distribution

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In this paper, we consider a system which has k statistically independent and identically distributed strength components and each component is constructed by a pair of statistically dependent elements. These elements \( (X_{1},Y_{1}),(X_{2},Y_{2}),\ldots ,(X_{k},Y_{k})\) follow a bivariate Kumaraswamy distribution and each element is exposed to a common random stress T which follows a Kumaraswamy distribution. The system is regarded as operating only if at least s out of k \((1\le s\le k)\) strength variables exceed the random stress. The multicomponent reliability of the system is given by \(R_{s,k}=P(\)at least s of the \((Z_{1},\ldots ,Z_{k})\) exceed T) where \(Z_{i}=\min (X_{i},Y_{i})\), \(i=1,\ldots ,k\). We estimate \( R_{s,k}\) by using frequentist and Bayesian approaches. The Bayes estimates of \(R_{s,k}\) have been developed by using Lindley’s approximation and the Markov Chain Monte Carlo methods due to the lack of explicit forms. The uniformly minimum variance unbiased and exact Bayes estimates of \(R_{s,k}\) are obtained analytically when the common second shape parameter is known. The asymptotic confidence interval and the highest probability density credible interval are constructed for \(R_{s,k}\). The reliability estimators are compared by using the estimated risks through Monte Carlo simulations. Real data are analysed for an illustration of the findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angali KA, Latifi SM, Hanagal DD (2014) Bayesian estimation of bivariate exponential distributions based on LINEX and quadratic loss functions: a survival approach with censored samples. Commun Stat Simul Comput 43(1):31–44

    Article  MathSciNet  MATH  Google Scholar 

  • Barreto-Souza W, Lemonte AJ (2013) Bivariate Kumaraswamy distribution: properties and a new method to generate bivariate classes. Statistics 47(6):1321–1342

    Article  MathSciNet  MATH  Google Scholar 

  • Basirat M, Baratpour S, Ahmadi J (2015) Statistical inferences for stress–strength in the proportional hazard models based on progressive Type-II censored samples. J Stat Comput Simul 85(3):431–449

    Article  MathSciNet  Google Scholar 

  • Bhattacharyya GK, Johnson RA (1974) Estimation of reliability in multicomponent stress–strength model. J Am Stat Assoc 69:966–970

    Article  MathSciNet  MATH  Google Scholar 

  • Birnbaum ZW (1956) On a use of Mann-Whitney statistics. In: Proceedings of the 3rd Berkeley symposium on mathematical statistics and probability vol 1, pp 13–17

  • Birnbaum ZW, McCarty BC (1958) A distribution-free upper confidence bounds for \(Pr(Y<X)\) based on independent samples of \(X\) and \(Y\). Ann Math Stat 29(2):558–562

  • Chen MH, Shao QM (1999) Monte Carlo estimation of Bayesian credible and HPD intervals. J Comput Gr Stat 8(1):69–92

    MathSciNet  Google Scholar 

  • Davarzani N, Haghighi F, Parsian A (2009) Estimation of \(P(X\le Y)\) for a bivariate Weibull distribution. J Appl Probab Stat 4(2):227–238

    MathSciNet  Google Scholar 

  • Davarzani N, Parsian A (2010) Bayesian inference in dependent right censoring. Commun Stat Theory Methods 39(7):1270–1288

    Article  MathSciNet  MATH  Google Scholar 

  • Davarzani N, Parsian A, Peeters R (2015) Dependent right censorship in the MOMW distribution. Commun Stat Theory Methods 44(11):2222–2242

    Article  MathSciNet  MATH  Google Scholar 

  • Domma F, Giordano S (2012) A stress–strength model with dependent variables to measure household financial fragility. Stat Methods Appl 21:375–389

    Article  MathSciNet  MATH  Google Scholar 

  • Domma F, Giordano S (2013) A copula-based approach to account for dependence in stress–strength models. Stat Pap 54(3):807–826

    Article  MathSciNet  MATH  Google Scholar 

  • Enis P, Geisser S (1971) Estimation of the probability that \(P(Y<X)\). J Am Stat Assoc 66:162–168

    MathSciNet  MATH  Google Scholar 

  • Eryilmaz S (2008) Consecutive \(k\)-out-of-\(n\): \(G\) system in stress–strength setup. Commun Stat Simul Comput 37(3):579–589

    Article  MathSciNet  MATH  Google Scholar 

  • Eryilmaz S (2008) Multivariate stress–strength reliability model and its evaluation for coherent structures. J Multivar Anal 99:1878–1887

    Article  MathSciNet  MATH  Google Scholar 

  • Eryilmaz S (2013) On stress–strength reliability with a time-dependent strength. J Qual Reliab Eng 2013:1–6

    Article  Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Rubin DB (2003) Bayesian data analysis. Chapman Hall, London

    MATH  Google Scholar 

  • Gradshteyn IS, Ryzhik IM (1994) Table of integrals, series and products. Academic Press, Boston

    MATH  Google Scholar 

  • Gunasekera S (2015) Generalized inferences of \( R=Pr(X>Y)\) for Pareto distribution. Stat Pap 56(2):333–351

    Article  MathSciNet  MATH  Google Scholar 

  • Hanagal DD (1995) Testing reliability in a bivariate exponential stress–strength model. J Indian Stat Assoc 33:41–45

    Google Scholar 

  • Hanagal DD (1996) Estimation of system reliability in a two component stress–strength models. Econ Qual Control 11:145–154

    MATH  Google Scholar 

  • Hanagal DD (1997) Note on estimation of reliability under bivariate Pareto stress–strength model. Stat Pap 38:453–459

    Article  MathSciNet  MATH  Google Scholar 

  • Hanagal DD (1997) Estimation of reliability when stress is censored at strength. Commun Stat Theory Methods 26(4):911–919

    Article  MathSciNet  MATH  Google Scholar 

  • Hanagal DD (1998) Estimation of system reliability in stress–strength models for distributions useful in life testing. IAPOR Trans 23:61–65

    MathSciNet  MATH  Google Scholar 

  • Hanagal DD (1999) Estimation of system reliability. Stat Pap 40:99–106

    Article  MathSciNet  MATH  Google Scholar 

  • Hanagal DD (2003) Estimation of system reliability in multicomponent series stress–strength models. J Indian Stat Assoc 41:1–7

    MathSciNet  Google Scholar 

  • Jana PK (1994) Estimation of \( P\left( {Y<X} \right) \) in the bivariate exponential case due to Marshall–Olkin. J Indian Stat Assoc 32:35–37

    MathSciNet  Google Scholar 

  • Jeevanand ES (1997) Bayes estimation of \(P(X_{2}<X_{1})\) for a bivariate Pareto distribution. Statistician 46:93–99

    Google Scholar 

  • Kızılaslan F, Nadar M (2015) Classical and Bayesian estimation of reliability in multicomponent stress–strength model based on Weibull distribution. Rev Colomb Estad 38(2):467–484

    Article  MathSciNet  Google Scholar 

  • Kotz S, Lumelskii Y, Pensky M (2003) The stress–strength model and its generalizations: theory and applications. World Scientific, Singapore

    Book  MATH  Google Scholar 

  • Kuo W, Zuo MJ (2003) Optimal reliability modeling, principles and applications. Wiley, New York

    Google Scholar 

  • Kundu D, Gupta RD (2009) Bivariate generalized exponential distribution. J Multivar Anal 100:581–593

    Article  MathSciNet  MATH  Google Scholar 

  • Kundu D, Gupta RD (2010) A class of bivariate models with proportional reversed hazard marginals. Sankhya B 72:236–253

    Article  MathSciNet  MATH  Google Scholar 

  • Kundu D, Gupta AK (2013) Bayes estimation for the Marshall–Olkin bivariate Weibull distribution. Comput Stat Data Anal 57:271–281

    Article  MathSciNet  MATH  Google Scholar 

  • Lindley DV (1980) Approximate Bayes method. Trab Estad 3:281–288

    Google Scholar 

  • Mukherjee SP, Saran LK (1985) Estimation of failure probability from a bivariate normal stress–strength distribution. Microelectron Reliab 25:692–702

    Article  Google Scholar 

  • Nadar M, Kızılaslan F, Papadopoulos A (2014) Classical and Bayesian estimation of \(P(Y<X)\) for Kumaraswamy’s distribution. J Stat Comput Simul 84(7):1505–1529

    Article  MathSciNet  MATH  Google Scholar 

  • Nadar M, Kızılaslan F (2014) Classical and Bayesian estimation of \(P(X<Y)\) using upper record values from Kumaraswamy’s distribution. Stat Pap 55(3):751–783

    Article  MathSciNet  MATH  Google Scholar 

  • Nadar M, Kızılaslan F (2016) Estimation of reliability in a multicomponent stress–strength model based on a Marshall–Olkin bivariate Weibull distribution. IEEE Trans Reliab 65(1):370–380

  • Najarzadegan H, Babaii S, Rezaei S, Nadarajah S (2015) Estimation of \(P(Y<X)\) for the Levy distribution. Hacet J Math Stat. doi:10.15672/HJMS.2015599877

  • Pak A, Khoolenjani NB, Jafari A (2015) Inference on \( P(Y<X)\) in bivariate Rayleigh distribution. Commun Stat Theory Methods 43(2):4881–4892

    MathSciNet  MATH  Google Scholar 

  • Rao GS, Kantam RRL (2010) Estimation of reliability in multicomponent stress–strength model: log-logistic distribution. Electron J Appl Stat Anal 3(2):75–84

    Google Scholar 

  • Rao GS (2012) Estimation of reliability in multicomponent stress–strength model based on generalized exponential distribution. Rev Colomb Estad 35(1):67–76

    MATH  Google Scholar 

  • Rao GS (2012) Estimation of reliability in multicomponent stress–strength model based on generalized inverted exponential distribution. IJCRR 4(21):48–56

    Google Scholar 

  • Rao GS (2012) Estimation of reliability in multicomponent stress–strength model based on Rayleigh distribution. Prob Stat Forum 5:150–161

    MATH  Google Scholar 

  • Rao GS (2013) Estimation of reliability in multicomponent stress–strength model based on inverse exponential distribution. Int J Stat Econ 10(1):28–37

    MathSciNet  MATH  Google Scholar 

  • Rao GS, Kantam RRL, Rosaiah K, Reddy JP (2013) Estimation of reliability in multicomponent stress–strength model based on inverse Rayleigh distribution. J Stat Appl Probab 2(3):261–267

    Article  Google Scholar 

  • Rao GS, Aslam M, Kundu D (2015) Burr Type XII distribution parametric estimation and estimation of reliability of multicomponent stress–strength. Commun Stat Theory Methods 44(23):4953–4961

    Article  MATH  Google Scholar 

  • Rao GS (2014) Estimation of reliability in multicomponent stress–strength model based on generalized Rayleigh distribution. J Mod Appl Stat Methods 13(1):367–379

    Article  Google Scholar 

  • Rao CR (1965) Linear statistical inference and its applications. Wiley, New York

    MATH  Google Scholar 

  • Tierney L (1994) Markov chains for exploring posterior distributions. Ann Stat 22(4):1701–1728

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Kızılaslan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kızılaslan, F., Nadar, M. Estimation of reliability in a multicomponent stress–strength model based on a bivariate Kumaraswamy distribution. Stat Papers 59, 307–340 (2018). https://doi.org/10.1007/s00362-016-0765-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-016-0765-8

Keywords

Navigation