Skip to main content
Log in

Spacings in Orthogonal and Symplectic Random Matrix Ensembles

  • Published:
Constructive Approximation Aims and scope

Abstract

It is one of the famous features of random matrices that several local eigenvalue statistics are for growing matrix sizes asymptotically described by a universal limiting law. It is universal in the sense that it does not depend on the details of the underlying matrix ensemble but on its symmetry class only. In this paper, we consider the universality of the nearest neighbor eigenvalue spacing distribution in invariant random matrix ensembles. Focusing on orthogonal and symplectic invariant ensembles, we show that the empirical spacing distribution converges in a uniform way. More precisely, the main result states that the expected Kolmogorov distance of the empirical spacing distribution from its universal limit converges to zero as the matrix size tends to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akemann, G., Baik, J., Di Francesco, P.: The Oxford Handbook of Random Matrix Theory. Oxford Handbooks in Mathematics Series. Oxford University Press, Oxford (2011)

    Google Scholar 

  2. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices, 1st edn. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  3. Baik, J., Deift, P., Johansson, K.: On the distribution of the length of the longest increasing subsequence of random permutations. J. Am. Math. Soc. 12(4), 1119–1178 (1999). doi:10.1090/S0894-0347-99-00307-0

    Article  MathSciNet  MATH  Google Scholar 

  4. Deift, P.: Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach, Courant Lecture Notes in Mathematics, vol. 3. New York University Courant Institute of Mathematical Sciences, New York (1999)

    Google Scholar 

  5. Deift, P., Gioev, D.: Random Matrix Theory: Invariant Ensembles and Universality, Courant Lecture Notes in Mathematics, vol. 18. Courant Institute of Mathematical Sciences, New York (2009)

    Google Scholar 

  6. Deift, P., Gioev, D., Kriecherbauer, T., Vanlessen, M.: Universality for orthogonal and symplectic Laguerre-type ensembles. J. Stat. Phys. 129(5–6), 949–1053 (2007). doi:10.1007/s10955-007-9325-x

    Article  MathSciNet  MATH  Google Scholar 

  7. Deift, P., Its, A.R., Zhou, X.: A Riemann–Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics. Ann. Math. (2) 146(1), 149–235 (1997). doi:10.2307/2951834

    Article  MathSciNet  MATH  Google Scholar 

  8. Deift, P., Kriecherbauer, T., McLaughlin, K.T.R., Venakides, S., Zhou, X.: Strong asymptotics of orthogonal polynomials with respect to exponential weights. Commun. Pure Appl. Math. 52(12), 1491–1552 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deift, P., Kriecherbauer, T., McLaughlin, K.T.R., Venakides, S., Zhou, X.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Commun. Pure Appl. Math. 52(11), 1335–1425 (1999). doi:10.1002/(SICI)1097-0312(199911)52:11<1335::AID-CPA1>3.0.CO;2-1

  10. Deift, P., Zhou, X.: A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation. Ann. Math. (2) 137(2), 295–368 (1993). doi:10.2307/2946540

    Article  MathSciNet  MATH  Google Scholar 

  11. Erdős, L.: Universality of Wigner random matrices: a survey of recent results. Uspekhi Mat. Nauk 66(3(399)), 67–198 (2011). doi:10.1070/RM2011v066n03ABEH004749

    Google Scholar 

  12. Feller, W.: An Introduction to Probability Theory and its Applications. No. 2 in Wiley Series in Probability and Mathematical Statistics. Wiley, New York (1966)

    Google Scholar 

  13. Fokas, A.S., Its, A.R., Kitaev, A.V.: The isomonodromy approach to matrix models in 2D quantum gravity. Commun. Math. Phys. 147(2), 395–430 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Forrester, P.J.: Log-Gases and Random Matrices, London Mathematical Society Monographs Series, vol. 34. Princeton University Press, Princeton (2010)

    Google Scholar 

  15. Forrester, P.J., Witte, N.S.: Exact Wigner surmise type evaluation of the spacing distribution in the bulk of the scaled random matrix ensembles. Lett. Math. Phys. 53(3), 195–200 (2000). doi:10.1023/A:1011074616607

    Article  MathSciNet  MATH  Google Scholar 

  16. Jimbo, M., Miwa, T., Môri, Y., Sato, M.: Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent. Phys. D 1(1), 80–158 (1980). doi:10.1016/0167-2789(80)90006-8

    Article  MathSciNet  MATH  Google Scholar 

  17. Katz, N.M., Sarnak, P.: Random Matrices, Frobenius Eigenvalues, and Monodromy, American Mathematical Society Colloquium Publications, vol. 45. American Mathematical Society, Providence (1999)

    Google Scholar 

  18. Kriecherbauer, T., Schubert, K.: Spacings: an example for universality in random matrix theory. In: Alsmeyer, G., Löwe, M. (eds.) Random Matrices and Iterated Random Functions, Springer Proceedings in Mathematics & Statistics, vol. 53, pp. 45–71. Springer, Berlin (2013)

  19. Kriecherbauer, T., Schubert, K., Schüler, K., Venker, M.: Global asymptotics for the Christoffel-Darboux kernel of random matrix theory. (2014). arXiv:1401.6772

  20. Kuijlaars, A.B.J., Vanlessen, M.: Universality for eigenvalue correlations from the modified Jacobi unitary ensemble. Int. Math. Res. Not. 30, 1575–1600 (2002). doi:10.1155/S1073792802203116

    Article  MathSciNet  Google Scholar 

  21. Levin, E., Lubinsky, D.S.: Universality limits in the bulk for varying measures. Adv. Math. 219(3), 743–779 (2008). doi:10.1016/j.aim.2008.06.010

    Article  MathSciNet  MATH  Google Scholar 

  22. Mahoux, G., Mehta, M.L.: A method of integration over matrix variables. IV. J. Phys. I 1(8), 1093–1108 (1991). doi:10.1051/jp1:1991193

    MathSciNet  Google Scholar 

  23. McLaughlin, K.T.R., Miller, P.D.: The \(\overline{\partial }\) steepest descent method for orthogonal polynomials on the real line with varying weights. International Mathematics Research Notices. IMRN pp. Art. ID rnn 075, 66 (2008)

  24. Mehta, M.L.: Random Matrices, Pure and Applied Mathematics (Amsterdam), vol. 142, 3rd edn. Elsevier/Academic Press, Amsterdam (2004)

    Google Scholar 

  25. Schubert, K.: On the Convergence of the Nearest Neighbour Eigenvalue Spacing Distribution for Orthogonal and Symplectic Ensembles. Ph.D. thesis, Ruhr-Universität Bochum, Germany (2012)

  26. Shcherbina, M.: Orthogonal and symplectic matrix models: universality and other properties. Commun. Math. Phys. 307(3), 761–790 (2011). doi:10.1007/s00220-011-1351-5

    Article  MathSciNet  MATH  Google Scholar 

  27. Soshnikov, A.: Level spacings distribution for large random matrices: Gaussian fluctuations. Ann. Math. (2) 148(2), 573–617 (1998). doi:10.2307/121004

    Article  MathSciNet  MATH  Google Scholar 

  28. Tao, T., Vu, V.: Random matrices: universality of local eigenvalue statistics. Acta Math. 206(1), 127–204 (2011). doi:10.1007/s11511-011-0061-3

    Article  MathSciNet  MATH  Google Scholar 

  29. Tracy, C.A., Widom, H.: Correlation functions, cluster functions, and spacing distributions for random matrices. J. Stat. Phys. 92(5–6), 809–835 (1998). doi:10.1023/A:1023084324803

    Article  MathSciNet  MATH  Google Scholar 

  30. Vanlessen, M.: Strong asymptotics of Laguerre-type orthogonal polynomials and applications in random matrix theory. Constr. Approx. 25(2), 125–175 (2007). doi:10.1007/s00365-005-0611-z

    Article  MathSciNet  MATH  Google Scholar 

  31. Widom, H.: On the relation between orthogonal, symplectic and unitary matrix ensembles. J. Stat. Phys. 94(3–4), 347–363 (1999). doi:10.1023/A:1004516918143

    Article  MathSciNet  MATH  Google Scholar 

  32. Wigner, E.: On the distribution of the roots of certain symmetric matrices. Ann. Math. 2(67), 325–327 (1958)

    Article  MathSciNet  Google Scholar 

  33. Wishart, J.: The generalised product moment distribution in samples from a normal multivariate population. Biometrika 20A(1/2), 32–52 (1928)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank the unknown referees and Martin Venker for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina Schubert.

Additional information

Communicated by Arno Kuijlaars.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schubert, K. Spacings in Orthogonal and Symplectic Random Matrix Ensembles. Constr Approx 42, 481–518 (2015). https://doi.org/10.1007/s00365-015-9274-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-015-9274-6

Keywords

Mathematics Subject Classification

Navigation