Skip to main content

Advertisement

Log in

Double Affine Hecke Algebra of Rank 1 and Orthogonal Polynomials on the Unit Circle

  • Published:
Constructive Approximation Aims and scope

Abstract

An infinite-dimensional representation of the double affine Hecke algebra of rank 1 and type \((C_1^{\vee },C_1)\) in which all generators are tridiagonal is presented. This representation naturally leads to two systems of polynomials that are orthogonal on the unit circle. These polynomials can be considered as circle analogs of the Askey–Wilson polynomials. The corresponding polynomials orthogonal on an interval are constructed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Askey, R., Wilson, J.: Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Am. Math. Soc. 54(319), 1–55 (1985)

    MathSciNet  MATH  Google Scholar 

  2. Cantero, M.J., Moral, L., Velázquez, L.: Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle. Linear Algebra Appl. 362, 29–56 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cantero, M.J., Marcellán, F., Moral, L., Velázquez, L.: Darboux transformations for CMV matrices. Adv. Math. 298, 122–206 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cherednik, I.: Double affine Hecke algebras, Knizhnik–Zamolodchikov equations, and Macdonald’s operators. Int. Math. Res. Not. 9, 171–180 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chihara, T.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978)

    MATH  Google Scholar 

  6. Delsarte, P., Genin, Y.: The split Levinson algorithm. IEEE Trans. Acoust. Speech Signal Process. 34, 470–478 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Derevyagin, M., Vinet, L., Zhedanov, A.: CMV matrices and little and big \(-\)1 Jacobi polynomials. Constr. Approx. 36, 513–535 (2012). arXiv:1108.3535

    Article  MathSciNet  MATH  Google Scholar 

  8. Derevyagin, M., Tsujimoto, S., Vinet, L., Zhedanov, A.: Bannai–Ito polynomials and dressing chains. Proc. Am. Math. Soc. 142, 4191–4206 (2014). arXiv:1211.1963

    Article  MathSciNet  MATH  Google Scholar 

  9. Fong, C.K., Wu, P.Y.: Band-diagonal operators. Linear Algebra Appl. 248, 185–204 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Genest, V.X., Vinet, L., Zhedanov, A.: The quantum superalgebra \({\mathfrak{osp}_{q}(1|2)}\) and a \(q\)-generalization of the Bannai–Ito polynomials. Commun. Math. Phys. 344, 465–481 (2016)

    Article  MATH  Google Scholar 

  11. Genest, V.X., Vinet, L., Zhedanov, A.: The non-symmetric Wilson polynomials are the Bannai–Ito polynomials. Proc. Am. Math. Soc. 144, 5217–5226 (2016). arXiv:1507.02995

    Article  MathSciNet  MATH  Google Scholar 

  12. Groenevelt, W.: Fourier transforms related to a root system of rank 1. Transform. Groups 12(1), 77–116 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lee, J.-H.: Q-polynomial distance-regular graphs and a double affine Hecke algebra of rank one. Linear Algebra Appl. 439, 3184–3240 (2013). arXiv:1307.5297

    Article  MathSciNet  MATH  Google Scholar 

  14. Lee, J.-H.: Nonsymmetric Askey–Wilson polynomials and Q-polynomial distance-regular graphs. J. Comb. Theory Ser. A 147, 75–118 (2017). arXiv:1509.04433

    Article  MathSciNet  MATH  Google Scholar 

  15. Killip, R., Nenciu, I.: Matrix models for circular ensembles. Int. Math. Res. Not. 2004(50), 2665–2701 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials and Their \(q\)-Analogues. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  17. Lemay, J.-M., Vinet, L., Zhedanov, A.: A \(q\)-generalization of the para-Racah polynomials. arXiv:1708.03368

  18. Koornwinder, T.: The relationship between Zhedanov algebra \({ AW}(3)\) and the double affine Hecke algebra in the rank one case. SIGMA 3, 063 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Macdonald, I.G.: Affine Hecke Algebras and Orthogonal Polynomials. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  20. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. A CRC Press Company, Boca Raton (2003)

    MATH  Google Scholar 

  21. Noumi, M., Stokman, J.V.: Askey–Wilson polynomials: an affine Hecke algebraic approach. In: Laredo Lectures on Orthogonal Polynomials and Special Functions, pp. 111–144. Nova Science Publishers, Hauppauge (2004). arXiv:math.QA/0001033

  22. Nomura, K., Terwilliger, P.: The universal DAHA of type \(({C_1}^{\vee },C_1)\) and Leonard pairs of \(q\)-Racah type. arXiv:1701.06089

  23. Oblomkov, A., Stoica, E.: Finite dimensional representations of double affine Hecke algebra of rank 1. J. Pure Appl. Algebra 213, 766–771 (2009). arXiv:math/0409256

    Article  MathSciNet  MATH  Google Scholar 

  24. Sahi, S.: Some properties of Koornwinder polynomials, in \(q\)-series from a contemporary perspective. Contemp. Math. 254, 395–411 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sahi, S.: Raising and lowering operators for Askey–Wilson polynomials. SIGMA 3, 002 (2007). arXiv:math.QA/0701134

    MathSciNet  MATH  Google Scholar 

  26. Simon, B.: Orthogonal Polynomials on the Unit Circle. AMS, Providence (2005)

    Book  MATH  Google Scholar 

  27. Terwilliger, P.: Double affine Hecke algebras of rank 1 and the \(\mathbb{Z}_3\)-symmetric Askey–Wilson relations. SIGMA 6, 065 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Tsujimoto, S., Vinet, L., Zhedanov, A.: Dunkl shift operators and Bannai–Ito polynomials. Adv. Math. 229, 2123–2158 (2012). arXiv:1106.3512

    Article  MathSciNet  MATH  Google Scholar 

  29. Watkins, D.S.: Some perspectives on the eigenvalue problem. SIAM Rev. 35, 430–471 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhedanov, A.: Hidden symmetry of Askey–Wilson polynomials. Theor. Math. Phys. 89, 1146–1157 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhedanov, A.: On some classes of polynomials orthogonal on arcs of the unit circle connected with symmetric orthogonal polynomials on an interval. J. Approx. Theory 94, 73–106 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Paul Terwilliger for his comments on the manuscript. The research of ST is supported by JSPS KAKENHI (Grant No. 16K13761) and that of LV by a discovery grant of the Natural Sciences and Engineering Research Council (NSERC) of Canada. The work of AZ is supported by the National Science Foundation of China (Grant No.11771015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Tsujimoto.

Additional information

Communicated by Sergey Denisov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsujimoto, S., Vinet, L. & Zhedanov, A. Double Affine Hecke Algebra of Rank 1 and Orthogonal Polynomials on the Unit Circle. Constr Approx 50, 209–241 (2019). https://doi.org/10.1007/s00365-019-09468-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-019-09468-z

Keywords

Mathematics Subject Classification

Navigation