Skip to main content

Advertisement

Log in

Numerical studies on fluid–structure interactions of stent deployment and stented arteries

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This study is to investigate the mechanical behaviors of angioplasty stents during and after implantation and blood flow in the stented artery using the immersed finite element method. In this study, the mechanical behaviors such as the expansion mechanism, stress distribution on the stent during the implantation, and stent responses toward various vascular conditions are analyzed. Furthermore, pulsatile blood flow in stented artery is also examined to identify potential regions where the blood clots form and potentially induce reactions leading to thrombus formation. We found that the wall shear stress and the residence time are the highest at the entrance and the exit of the stent while they decrease significantly in between stent struts. The results suggested that platelets/particles are most likely to be activated near the entrance; they form aggregates in between struts where the shear stress is very low and eventually reside at the end of the stent where the resident time is the highest. Our numerical observations agree quite well with in vitro experimental studies. This analysis will assist in the development of novel stent designs and stent deployment protocols to minimize vascular injury during stenting and reduce restenosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bogousslavski J, Van Melle G, Regli F (1988) The Lausanne stroke registry: analysis of 1000 consecutive patients with first stroke. Stroke 19:1083–1092

    Google Scholar 

  2. Mohr JP, Caplan LR, Melski JW, Goldstein RJ, Duncan GW, Kistler FP, Pessin MS, Bleich HL (1978) The Harvard cooperative stroke registry: a prospective registry. Neurology 28:754–762

    Google Scholar 

  3. Fischman DL, Leon MB, Baim DS et al (1994) A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. N Engl J Med 331:496–501

    Article  Google Scholar 

  4. Gottsauner-Wolf M, Moliterno DJ, Lincoff AM, Topol EJ (1996) Restenosis—an open file. Clin Cardiol 19(5):347–356

    Article  Google Scholar 

  5. Serruys PW, de Jaegere P, Kiemeneij F et al (1994) A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. N Engl J Med 331:489–495

    Article  Google Scholar 

  6. Stoeckel D, Bonsignore C, Duda S (2002) A survey of stent designs. Minim Invasive Ther Allied Technol 11(4):137–147

    Article  Google Scholar 

  7. Colombo A, Hall P, Nakamura S et al (1995) Intracoronary stenting without anticoagulation accomplished with intravascular ultrasound guidance. Circulation 91:1676–1688

    Google Scholar 

  8. Goldberg SL, Colombo A, Nakamura S, Almagor Y, Maiello L, Tobis JM (1994) Benefit of intracoronary ultrasound in the deployment of Palmaz-Schatz stents. J Am Coll Cardiol 24:996–1003

    Google Scholar 

  9. Segers P, Kostopoulos K, De Scheerder I, Verdonck P (1998) Biomechanical aspects of coronary stents. In: Verdonck P (ed) Intra and extracorporeal cardiovascular fluid dynamics. Computational Mechanics Publications, Southampton, pp 203–232. ISBN 90-423-0055-8

    Google Scholar 

  10. Holzapfel GA, Schulze-Bauer CAJ, Stadler M (2000) Mechanism of angioplasty: wall, ballon and stent. Mech Biol 46:141–156

    Google Scholar 

  11. Dumoulin C, Cochelin B (2000) Mechanical behavior modeling of balloon-expandable stents. J Biomech 33:1461–1470

    Article  Google Scholar 

  12. Etave F, Finet G, Boivin M et al (2001) Mechanical properties of coronary stents determined by using finite element analysis. J Biomech 34:1065–1075

    Article  Google Scholar 

  13. Migliavacca F, Petrini L, Auricchio F, Dubini G (2003) Deployment of an intravascular stent in coronary stenotic arteries: a computational study. In: Summer bioengineering conference, Key Biscane, Florida, USA, pp 169–170

  14. Migliavacca F, Petrini L, Massarotti P et al (2004) Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall. Biomech Model Mechanobiol 2:205–217

    Article  Google Scholar 

  15. Petrini L, Migliavacca F, Dubini G, Auricchio F (2003) Evaluation of intravascular stent flexibility by means of numerical analysis. In: Summer bioengineering conference, Key Biscane, Florida, USA, pp 251–252

  16. Holmes DR, Hirshfeld J, Faxon D et al (1998) Coronary artery stents. J Am Coll Cardiol 32:1471–1482

    Article  Google Scholar 

  17. Haude M, Erbel R, Issa H, Meyer J (1993) Quantitative analysis of elastic recoil after balloon angioplasty and after intracoronary implantation of balloon-expandable Palmaz-Schatz stents. J Am Coll Cardiol 21:26–34

    Article  Google Scholar 

  18. Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. J Am Med Assoc 282:2035–2042

    Article  Google Scholar 

  19. Bluestein D, Niu L, Schoephoerster RT, Dewanjee MK (1996) Steady flow in an aneurysm model: correlation between fluid dynamics and blood platelet deposition. J Biomech Eng 118(3):280–286

    Article  Google Scholar 

  20. Bluestein D, Niu L, Schoephoerster RT, Dewanjee MK (1997) Fluid mechanics of arterial stenosis: relationship to the development of mural thrombus. Ann Biomed Eng 25(2):344–356

    Article  Google Scholar 

  21. Folts JD, Crowell EB, Rowe GG (1976) Platelet aggregation in partially obstructed vessels and its elimination with aspirin. Circulation 54:365–370

    Google Scholar 

  22. Canic S, Mikelic A, Tambaca J (2005) A two-dimensional effective model describing fluid–structure interaction in blood flow: analysis, simulation and experimental validation. Special Issue of Comptes Rendus Mechanique, Académie des sciences (Paris)

  23. Giddens DP, Zarins CK, Glagov S (1990) Response of arteries to near-wall fluid dynamic behavior. App Mech Rev 43:98–102

    Google Scholar 

  24. Mittal R, Simmons SP, Najjar F (2003) Numerical study of pulsatile flow in a constricted channel. J Fluid Mech 485:337–378

    Article  MATH  Google Scholar 

  25. Perktold K, Resch M, Peter RO (1991) Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation. J Biomech 24(6):409–420

    Article  Google Scholar 

  26. Reese JM, Thompson DS (1998) Shear stress in arterial stenoses: a momentum integral model. J Biomech 31(11):1051–1057

    Article  Google Scholar 

  27. Siegel JM, Markou CP, Ku DN, Hanson SR (1994) A scaling law for wall shear stress through an arterial stenosis. J Biomech Eng 116:446–451

    Article  Google Scholar 

  28. Taylor CA, Hughes TJR, Zarins CK (1998) Finite element modeling of blood flow in arteries. Comput Methods Appl Mech Eng 158:155–196

    Article  MATH  MathSciNet  Google Scholar 

  29. Tu C, Deville M, Dheur L, Vanderschuren L (1992) Finite element simulation of pulsatile flow through arterial stenosis. J Biomech 25(10):1142–1152

    Article  Google Scholar 

  30. Friedman MH, Hutchins GM, Bargeron CB, Deters OJ, Mark FF (1981) Correlation of human arterial morphology with hemodynamic measurements in arterial casts. J Biomech Eng 103:204–207

    Article  Google Scholar 

  31. He X, Ku DN (1996) Pulsatile flow in the human left coronary artery bifurcation: Average conditions. J Biomech Eng 118:74–82

    Article  Google Scholar 

  32. Ku DN, Giddens DP, Zarins CK, Glagov S (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5:293–302

    Google Scholar 

  33. Moore JE, Guggenheim N, Delfino A et al (1994) Preliminary analysis of the effects of blood vessel movement on blood flow patterns in the coronary arteries. J Biomech Eng 116:302–306

    Article  Google Scholar 

  34. Giddens DP, Zarins CK, Glagov S (1993) The role of fluid mechanics in localization and detection of atherosclerosis. J Biomech Eng 115:588–594

    Article  Google Scholar 

  35. Glagov S (1994) Intimal hyperplasia, vascular modeling, and the restenosis problem. Circulation 89:2888–2891

    Google Scholar 

  36. Lee D, Chiua YL, Jen CJ (1997) Platelet adhesion onto the wall of a flow chamber with an obstacle. Biorheology 34(2):111–126

    Article  Google Scholar 

  37. Zarins CK (1993) Hemodynamic factors in atherosclerosis. In: Moore W (ed) Vascular surgery: a comprehensive review. Saunders Co. WB, Philadelphia

  38. Lei M, Kleinstreuer C, Truskey GA (1995) Numerical investigation and prediction of atherogenic sites in branching arteries. J Biomech Eng 117:350–357

    Article  Google Scholar 

  39. Friedrich P, Reininger AJ (1995) Occlusive thrombus formation on indwelling catheters: in vitro investigation and computational analysis. Thromb Haemost 73(1):66–72

    Google Scholar 

  40. Moake JL, Turner NA, Stathopoulos NA, Nolasco LH, Hellums JD (1988) Shear-induced platelet aggregation can be mediated by VWF released from platelets, as well as by exogenous large or unusually large VWF multimers, requires adenosine diphosphate, and is resistant to aspirin. Blood 71:1366–1374

    Google Scholar 

  41. Reininger AJ, Heinzmann U, Reininger CB, Friedrich P, Wurzinger LJ (1994) Flow mediated fibrin thrombus formation in an endothelium-lined model of arterial branching. Thromb Res 74(6):629–641

    Article  Google Scholar 

  42. Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S (1983) Carotid bifurcation atherosclerosis: quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 53:502–514

    Google Scholar 

  43. Natarajan S, Mokhtarzadeh-Dehghan (2000) A numerical and experimental study of periodic flow in a model of a corrugated vessel with application to stented arteries. Med Eng Phys 22:555–566

  44. Benard N, Coisne D, Donal E, Perrault R (2003) Experimental study of laminar blood flow through an artery treated by a stent implantation: characterisation of intra-stent wall shear stress. J Biomech 36:991–998

    Article  Google Scholar 

  45. Berry JL, Santamarina A, Moore JE, Roychowdhury S, Routh WD (2000) Experimental and computational flow evaluation of coronary stents. Ann Biomed Eng 28:386–398

    Article  Google Scholar 

  46. Zhang LT, Gerstenberger A, Wang X, Liu WK (2004) Immersed finite element method. Comput Methods Appl Mech Eng 193:2051–2067

    Article  MATH  MathSciNet  Google Scholar 

  47. Zhang LT, Gay M (2007) Immersed finite element method for fluid–structure interactions. J Fluid Struct 23(6):839–857

    Article  Google Scholar 

  48. Liu Y, Zhang L, Wang X, Liu WK (2004) Coupling of Navier–Stokes equations with protein molecular dynamics and its application to hemodynamics. Int J Numer Methods Fluids 46(12):1237–1252

    Article  MATH  MathSciNet  Google Scholar 

  49. Peskin CS (1977) Numerical analysis of blood flow in the heart. J Comput Phys 25:220–252

    Article  MATH  MathSciNet  Google Scholar 

  50. Peskin CS (2002) The immersed boundary method. Acta Numer 11:479–517

    Article  MATH  MathSciNet  Google Scholar 

  51. Wang X, Liu WK (2004) Extended immersed boundary method using FEM and RKPM. Comput Methods Appl Mech Eng 193:1305–1321

    Article  MATH  Google Scholar 

  52. Wang X (2006) From immersed boundary method to immersed continuum method. Int J Multiscale Comp Eng 4(1):127–145

    Article  Google Scholar 

  53. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20:1081–1106

    Article  MATH  MathSciNet  Google Scholar 

  54. Liu WK, Chen YJ (1995) Wavelet and multiple scale reproducing kernel methods. Int J Numer Methods Fluids 21:901–932

    Article  MATH  Google Scholar 

  55. Zhang LT, Wagner GJ, Liu WK (2002) A parallized meshfree method with boundary enrichment for large-scale CFD. J Comput Phys 176:483–506

    Article  MATH  Google Scholar 

  56. Murphy BP, Savage P, McHugh PE, Quinn DF (2003) The stress–strain behavior of coronary stent struts is size dependent. Ann Biomed Eng 31(6):686–691

    Article  Google Scholar 

  57. Holdsworth DW, Norley CJD, Frayne R, Steinman DA, Rutt BK (1999) Characterization of common carotid artery blood-flow waveforms in normal human subjects. Physiol Meas 20:219–240

    Article  Google Scholar 

  58. Caro CG, Pedley TJ, Schroter RC, Seed WA (1978) Mechanics of the circulation. Oxford University Press, New York

  59. Ramstack JM, Zucherman L, Mockros LF (1979) Shear-induced activation of platelets. J Biomech 12(2):113–125

    Article  Google Scholar 

  60. Nazemi M, Kleinstreuer C (1989) Analysis of particle trajectories in aortic artery bifurcations with stenosis. ASME J Biomech Eng 111(4):311–315

    Google Scholar 

  61. Cao J, Rittgers SE (1998) Particle motion within in vitro models of stenosed internal carotid and left anterior descending coronary arteries. Ann Biomed Eng 26:190–199

    Article  Google Scholar 

  62. Himburg HA, Grzybowski DM, Hazel AL, LaMack JA, Li XM, Friedman MH (2004) Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am J Physiol Heart C 286:1916–1922

    Article  Google Scholar 

  63. Ladisa JF, Guler I, Olson LE, Hettrick DA, Kersten JR (2003) Three-dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation. Ann Biomed Eng 31:972–980

    Article  Google Scholar 

  64. Oshinski JN, Curtin JL, Loth F (2006) Mean-average wall shear stress measurements in the common carotid artery. J Cardiovasc Magn Reson 8:1–6

    Article  Google Scholar 

  65. Wentzel JJ, Whelan DM, van der Giessen WJ et al (2000) Coronary stent implantation changes 3-D vessel geometry and 3-D shear stress distribution. J Biomech 33:1287–1295

    Article  Google Scholar 

  66. Longest PW, Kleinstreuer C (2003) Comparison of blood particle deposition models for non-parallel flow domains. J Biomech 36:421–430

    Article  Google Scholar 

  67. Sprague EA, Luo J, Palmaz JC (1997) Human aortic endothelial cell migration onto stent surfaces under static and flow condition. J Vasc Interv Radiol 8:83–92

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the LA Board of Regents (LEQSF(2006-09)-RD-A-30) for its supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. T. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gay, M., Zhang, L.T. Numerical studies on fluid–structure interactions of stent deployment and stented arteries. Engineering with Computers 25, 61–72 (2009). https://doi.org/10.1007/s00366-008-0105-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-008-0105-2

Keywords

Navigation