Skip to main content
Log in

A novel radial basis function method for 3D linear and nonlinear advection diffusion reaction equations with variable coefficients

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The radial basis function method for 3D advection diffusion reaction equations with variable coefficients is presented. The proposed method implements the linear combination of radial basis functions which impose boundary conditions in advance, and thus such a combination with weighted parameters can be used to construct the final approximation. Furthermore, the weighted parameters are solved by substituting the approximation into governing equations. This method leads to crucial improvements in the feasibility and accuracy which can now be easily applied to general 3D nonlinear problems through linearized techniques. Finally, accuracy and efficiency of the proposed method are verified by several examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bear J, Cheng AHD (2010) Modelling groundwater flow and contaminant transport. Springer, London

    MATH  Google Scholar 

  2. Xue Y, Yang H (2013) A numerical method to estimate temperature intervals for transient convection diffusion heat transfer problems. Int Commun Heat Mass Transf 47(9):56–61

    Google Scholar 

  3. Chatwin PC, Allen CM (1985) Mathematical models of dispersion in rivers and estuaries. Annu Rev Fluid Mech 17(1):119–149

    MATH  Google Scholar 

  4. Dehghan M (2003) Locally explicit schemes for three-dimensional diffusion with a non-local boundary specification. Appl Math Comput 138:489–501

    MathSciNet  MATH  Google Scholar 

  5. Dehghan M (2004) Numerical solution of the three-dimensional advective-diffusion equation. Appl Math Comput 150:5–19

    MathSciNet  MATH  Google Scholar 

  6. Dehghan M (2005) Quasi-implicit and two-level explicit finite-difference procedures for one-dimensional advection equation. Appl Math Comput 167(1):46–47

    MathSciNet  MATH  Google Scholar 

  7. Mohebbi A, Dehghan M (2010) High-order compact solution of the one-dimensional heat and advection-diffusion equations. Appl Math Model 34(10):3071–3084

    MathSciNet  MATH  Google Scholar 

  8. Melenk JM, Schwab C (2017) An hp finite element method for convection-diffusion problems in one dimension. IMA J Numer Anal 19(3):2030–2030

    MathSciNet  Google Scholar 

  9. Aubry R, Idelsohn SR (2005) Particle finite element method in fluid-mechanics including thermal convection-diffusion. Pergamon Press Inc., Oxford

    Google Scholar 

  10. Hermeline F (2000) A finite volume method for the approximation of diffusion operators on distorted meshes. Academic Press Professional, Inc., San Diego

    MATH  Google Scholar 

  11. Oruç Ö (2019) A meshless multiple-scale polynomial method for numerical solution of 3D convection-diffusion problems with variable coefficients. Eng Comput. https://doi.org/10.1007/s00366-019-00758-5

    Article  Google Scholar 

  12. Lin J, Zhang CZ, Sun LL, Lu J (2018) Simulation of seismic wave scattering by embedded cavities in an elastic half-plane using the novel singular boundary method. Adv Appl Math Mech 10(2):322–342

    MathSciNet  MATH  Google Scholar 

  13. Gu Y, He XQ, Chen W, Zhang CZ (2018) Analysis of three-dimensional anisotropic heat conduction problems on thin domains using an advanced boundary element method. Comput Math Appl 75(1):33–44

    MathSciNet  MATH  Google Scholar 

  14. Lin J, Chen CS, Liu CS, Lu J (2016) Fast simulation of multi-dimensional wave problems by the sparse scheme of the method of fundamental solutions. Comput Math Appl 72(3):555–567

    MathSciNet  MATH  Google Scholar 

  15. Gu Y, Fan CM, Xu RP (2019) Localized method of fundamental solutions for large-scale modeling of two-dimensional elasticity problems. Appl Math Lett 93:8–14

    MathSciNet  MATH  Google Scholar 

  16. Zhang A, Gu Y, Hua Q, Chen W, Zhang C (2018) A regularized singular boundary method for inverse Cauchy problem in three-dimensional elastostatics. Adv Appl Math Mech 10(6):1459–1477

    MathSciNet  MATH  Google Scholar 

  17. Wang FJ, Hua QS, Liu CS (2018) Boundary function method for inverse geometry problem in two-dimensional anisotropic heat conduction equation. Appl Math Lett 84:130–136

    MathSciNet  MATH  Google Scholar 

  18. Oruç Ö (2020) Two meshless methods based on local radial basis function and barycentric rational interpolation for solving 2D viscoelastic wave equation. Comput Math Appl 79(12):3272–3288

    MathSciNet  MATH  Google Scholar 

  19. Oruç Ö (2020) A local hybrid kernel meshless method for numerical solutions of two-dimensional fractional cable equation in neuronal dynamics. Numer Methods Partial Differ Equ. https://doi.org/10.1002/num.22499

    Article  MathSciNet  Google Scholar 

  20. Dai L, Tian CS, Xiao R (2020) Modeling the thermo-mechanical behavior and constrained recovery performance of cold-programmed amorphous shape-memory polymers. Int J Plast 127:102654

    Google Scholar 

  21. Gharib M, Khezri M, Foster SJ (2017) Meshless and analytical solutions to the time-dependent advection-diffusion-reaction equation with variable coefficients and boundary conditions. Appl Math Model 49:220–242

    MathSciNet  MATH  Google Scholar 

  22. Li J, Feng X, He Y (2019) RBF-based meshless local Petrov Galerkin method for the multi-dimensional convection-diffusion-reaction equation. Eng Anal Bound Elem 98:46–53

    MathSciNet  MATH  Google Scholar 

  23. Oruç Ö (2019) Numerical solution to the deflection of thin plates using the two-dimensional Berger equation with a meshless method based on multiple-scale Pascal polynomials. Appl Math Model 74:441–456

    MathSciNet  MATH  Google Scholar 

  24. Oruç Ö (2020) Meshfree computational approach based on multiple-scale pascal polynomials for numerical solution of a 2D elliptic problem with nonlocal boundary conditions. Int J Comput Methods 17:1950080

    MathSciNet  MATH  Google Scholar 

  25. Zhang X, Xiang H (2014) Variational multiscale element free Galerkin method for convection-diffusion-reaction equation with small diffusion. Eng Anal Bound Elem 46:85–92

    MathSciNet  MATH  Google Scholar 

  26. Dehghan M, Shirzadi M (2015) Meshless simulation of stochastic advection-diffusion equations based on radial basis functions. Eng Anal Bound Elem 53:18–26

    MathSciNet  MATH  Google Scholar 

  27. Sarra SA (2012) A local radial basis function method for advection-diffusion-reaction equations on complexly shaped domains. Appl Math Comput 218(19):9853–9865

    MathSciNet  MATH  Google Scholar 

  28. Zhang P, Zhang X, Xiang H, Song LZ (2016) A fast and stabilized meshless method for the convection-dominated convection-diffusion problems. Numer Heat Transf Part A Appl 70(4):420–431

    Google Scholar 

  29. Reutskiy SY, Lin J (2017) A semi-analytic collocation technique for steady-state strongly nonlinear advection-diffusion-reaction equations with variable coefficients. Int J Numer Methods Eng 112(13):2004–2024

    MathSciNet  Google Scholar 

  30. Yue X, Wang F, Hua Q, Qiu XY (2019) A novel space-time meshless method for nonhomogeneous convection-diffusion equations with variable coefficients. Appl Math Lett 92:144–150

    MathSciNet  MATH  Google Scholar 

  31. Gharib M, Khezri M, Foster SJ, Castel A (2017) Application of the meshless generalised RKPM to the transient advection-diffusion-reaction equation. Comput Struct 193:172–186

    Google Scholar 

  32. Bustamante CA, Power H, Sua YH, Florez WF (2013) A global meshless collocation particular solution method (integrated Radial Basis Function) for two-dimensional Stokes flow problems. Appl Math Model 37(6):4538–4547

    MathSciNet  MATH  Google Scholar 

  33. Reutskiy SY (2016) A meshless radial basis function method for 2D steady-state heat conduction problems in anisotropic and inhomogeneous media. Eng Anal Bound Elem 66:1–11

    MathSciNet  MATH  Google Scholar 

  34. Kansa EJ (1990) Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput Math Appl 19(8):147–161

    MathSciNet  MATH  Google Scholar 

  35. Kansa EJ (1990) Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates. Comput Math Appl 19(8):127–145

    MathSciNet  MATH  Google Scholar 

  36. Branco F, Godinho L (2008) Formulation of Kansa’s method in the frequency domain for the analysis of transient heat conduction. Exp Therm Fluid Sci 32(8):1492–1498

    MATH  Google Scholar 

  37. Lin J, Chen W, Sze KY (2012) A new radial basis function for Helmholtz problems. Eng Anal Bound Elem 36(12):1923–1930

    MathSciNet  MATH  Google Scholar 

  38. Zheng H, Zhang C, Wang Y et al (2016) A meshfree local RBF collocation method for anti-plane transverse elastic wave propagation analysis in 2D phononic crystals. J Comput Phys 305:997–1014

    MathSciNet  MATH  Google Scholar 

  39. Chen W, Hong Y, Lin J (2018) The sample solution approach for determination of the optimal shape parameter in the Multiquadric function of the Kansa method. Comput Math Appl 75(8):2942–2954

    MathSciNet  MATH  Google Scholar 

  40. Jankowska MA, Karageorghis A, Chen CS (2018) Improved Kansa RBF method for the solution of nonlinear boundary value problems. Eng Anal Bound Elem 87:173–183

    MathSciNet  MATH  Google Scholar 

  41. Karageorghis A (2010) Efficient Kansa-type MFS algorithm for elliptic problems. Numer Algorithms 54(2):261–278

    MathSciNet  MATH  Google Scholar 

  42. Liu XY, Karageorghis A, Chen CS (2015) A Kansa-radial basis function method for elliptic boundary value problems in annular domains. J Sci Comput 65(3):1240–1269

    MathSciNet  MATH  Google Scholar 

  43. Divo E, Kassab AJ (2007) An efficient localized radial basis function meshless method for fluid flow and conjugate heat transfer. J Heat Transf 129(2):124–136

    Google Scholar 

  44. Li K, Huang QB, Wang JL, Lin LG (2011) An improved localized radial basis function meshless method for computational aeroacoustics. Eng Anal Bound Elem 35(1):47–55

    MathSciNet  MATH  Google Scholar 

  45. Reutskiy SY (2014) A method of particular solutions for multi-point boundary value problems. Appl Math Comput 243:559–569

    MathSciNet  MATH  Google Scholar 

  46. Reutskiy SY (2016) The backward substitution method for multipoint problems with linear Volterra–Fredholm integro-differential equations of the neutral type. J Comput Appl Math 296:724–738

    MathSciNet  MATH  Google Scholar 

  47. Hong YX, Lin J, Chen W (2018) A typical backward substitution method for the simulation of Helmholtz problems in arbitrary 2D domains. Eng Anal Bound Elem 93:167–176

    MathSciNet  MATH  Google Scholar 

  48. Reutskiy SY (2017) A new semi-analytical collocation method for solving multi-term fractional partial differential equations with time variable coeffcients. Appl Math Model 45:238–254

    MathSciNet  MATH  Google Scholar 

  49. Reutskiy SY, Lin J (2018) A semi-analytic collocation method for space fractional parabolic PDE. Int J Comput Math 95(6–7):1326–1339

    MathSciNet  MATH  Google Scholar 

  50. Safari F, Azarsa P (2019) Backward substitution method based on Mntz polynomials for solving the nonlinear space fractional partial differential equations. Math Methods Appl Sci 43(2):847–864

    MATH  Google Scholar 

  51. Lin J, Reutskiy SY, Lu J (2018) A novel meshless method for fully nonlinear advection-diffusion-reaction problems to model transfer in anisotropic media. Appl Math Comput 339:459–476

    MathSciNet  MATH  Google Scholar 

  52. Lin J, Reutskiy SY, Chen CS, Lu J (2019) A novel method for solving time-dependent 2D advection-diffusion-reaction equations to model transfer in nonlinear anisotropic media. Commun Comput Phys 26:233–264

    MathSciNet  MATH  Google Scholar 

  53. Lin J, He YX, Reutskiy SY, Lu J (2018) An effective semi-analytical method for solving telegraph equation with variable coefficients. Eur Phys J Plus 133:290

    Google Scholar 

  54. Lin J, Feng WJ, Reutskiy SY, Xu HF, He YJ (2021) A new semi-analytical method for solving a class of time fractional partial differential equations with variable coefficients. Appl Math Lett 112:106712

    MathSciNet  MATH  Google Scholar 

  55. Bellman B, Kalaba R (1965) Quasilinearization and nonlinear boundary-value problems. Elsevier, Amsterdam

    MATH  Google Scholar 

  56. Romão EC, Moura LFD (2012) Galerkin and least squares methods to solve a 3D convection-diffusion-reaction equation with variable coefficients. Numer Heat Transf Part A Appl 61(9):669–698

    Google Scholar 

  57. Zhai SY, Feng XL, Liu DM (2013) A novel method to deduce a high-order compact difference scheme for the three-dimensional semilinear convection-diffusion equation with variable coefficients. Numer Heat Transf Part B Fundam 63(5):425–455

    Google Scholar 

  58. Mohanty RK, Singh S (2006) A new highly accurate discretization for three-dimensional singularly perturbed nonlinear elliptic partial differential equations. Numer Methods Partial Differ Equ 22(6):1379–1395

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. U1765204, 11772068), the Natural Science Foundation of Jiangsu Province (No. BK20190073), the Fundamental Research Funds for the Central Universities (No. B200202126), the State Key Laboratory of Acoustics, Chinese Academy of Sciences (No. SKLA202001), the State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University (No. KF2020-22), and the China Postdoctoral Science Foundation (Nos. 2017M611669, 2018T110430)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, X., Lin, J. A novel radial basis function method for 3D linear and nonlinear advection diffusion reaction equations with variable coefficients. Engineering with Computers 38 (Suppl 1), 475–488 (2022). https://doi.org/10.1007/s00366-020-01161-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01161-1

Keywords

Navigation