Skip to main content

Advertisement

Log in

Analyses of bottom simulating reflections offshore Arauco and Coyhaique (Chile)

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Two seismic sections offshore Arauco and Coyhaique, Chile, have been analysed to better define the seismic character of hydrate-bearing sediments. The velocity analysis was used to estimate the gas-phase concentration, which can serve to correlate hydrate presence to the geological features. The velocity model allowed us to recognise the hydrate layer above the bottom simulating reflector (BSR), and the free gas layer below it. The velocity field is affected by strong lateral variation, showing maximum (above the BSR) and minimum (below the BSR) values in the southern sector. Here, highest gas hydrate and free gas concentrations were calculated (15% and 2.7% of total volume respectively). The estimated geothermal gradient ranges from 35 to 95°C/km. In the northern sector, the highest gas hydrate and free gas concentrations are 15% and 0.2% of total volume respectively, and the geothermal gradient is uniform and equal to about 30°C/km.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angermann D, Klotz J, Reiberg C (1999) Space-geodetic estimation of the Nazca-South American Euler vector. Earth Planet Sci Lett 171:329–334

    Article  Google Scholar 

  • Bangs NL, Brown KM (1995) Regional heat flow in the vicinity of the Chile Triple Junction constrained by the depth of the bottom simulating reflector. In: Lewis SD, Behrmann JH, Musgrave RJ et al (eds) Proc ODP Scientific Results 141:253–258

  • Bangs NL, Sawyer DS, Golovchenko X (1993) Free gas at the base of the gas hydrate zone in the vicinity of the Chile triple Junction. Geology 21:905–908

    Article  Google Scholar 

  • Berndt C, Bunz S, Clayton T, Mienert J, Saunders M (2004) Seismic character of bottom-simulating-reflectors: examples from the mid Norwegian margin. Mar Pet Geol 21:723–733

    Article  Google Scholar 

  • Beydoun WB, Keho TH (1987) The paraxial ray method. Geophysics 52:1639–1653

    Article  Google Scholar 

  • Brown KM, Bangs NL, Froelich PN, Kvenvolden KA (1996) The nature, distribution, and origin of gas hydrate in the Chile Triple Junction region. Earth Planet Sci Lett 139:471–483

    Article  Google Scholar 

  • Carcione JM, Tinivella U (2000) Bottom simulating reflectors: seismic velocities and AVO effects. Geophysics 65:54–67

    Article  Google Scholar 

  • Cerveny V (1985) Ray synthetic seismograms for complex two-dimensional and three-dimensional structures. J Geophys 58:2–26

    Google Scholar 

  • Chand S, Minshull TA, Gei D, Carcione JM (2004) Elastic velocity models for gas-hydrate-bearing sediments—a comparison. Geophys J Int 159:573–590

    Article  Google Scholar 

  • Cohen JK, Stockwell JW (2001) CWP/SU: seismic unix release 35: a free package for seismic research and processing. Center for Wave Phenomena, Colorado School of Mines, Golden

    Google Scholar 

  • Diaz-Naveas J (1999) Sediment subduction and accretion at the Chilean convergent margin between 35’ and 40’S. Dissertation, University of Kiel, Kiel

  • Dickens GR, Quinby-Hunt MS (1994) Methane hydrate stability in seawater. Geophys Res Lett 21:2115–2118

    Article  Google Scholar 

  • Diemer JA, Forsythe R (1995) Grain size variations within slope facies recovered from the Chile Margin Triple Junction. In: Lewis SD, Behrmann JH, Musgrave RJ et al (eds) Proc ODP Scientific Results 141:79–94

  • Froelich PN, Kvenvolden KA, Torres ME, Waseda A, Didyk BM Lorenson TD (1995) Geochemical evidence for gas hydrate in sediment near the Chile triple junction. In: Lewis SD, Behrmann JH, Musgrave RJ et al (eds) Proc ODP Scientific Results 141:279–286

  • Ganguly N, Spence GD, Chapman NR, Hyndman RD (2000) Heat flow variations from bottom simulating reflectors on the Cascadia margin. Mar Geol 164:53–68

    Article  Google Scholar 

  • Grevemeyer I, Villinger H (2001) Gas hydrate stability and the assessment of heat flow through continental margins. Geophys J Int 145:647–660

    Article  Google Scholar 

  • Grevemeyer I, Diaz-Naveaz JL, Ranero CR, Villenger HW, Party Ocean Drilling Program Scientific (2003) Heat flow over the decensing Nazca plate in Central Chile, 32°S to 41°S: observations from ODP Leg 202 and the occurrence of natural gas hydrates. Earth Planet Sci Lett 213:285–298

    Article  Google Scholar 

  • Grevemeyer I, Kaul N, Díaz-Naveas JL (2006) Geothermal evidence for fluid flow through the gas hydrate stability field off Central Chile-transient flow related to large subduction zone earthquakes? Geophys J Int 166:461–468

    Article  Google Scholar 

  • Hovland M, Gudmestad OT (2001) Potential influence of gas hydrates on seabed installations. In: Paull CK, Dillon WP (eds) Natural gas hydrates: occurrence, distribution and detection. Geophys Monogr Am Geophys Union 124:307–315

  • Hyndman RD, Spence GD (1992) A seismic study of methane hydrate marine bottom-simulating-reflectors. J Geophys Res 97:6683–6698

    Article  Google Scholar 

  • Kendrick E, Bevis M, Smalley R, Brooks B, Vargas RC, Lauría E, Fortes LPS (2003) The Nazca-South America Euler vector and its rate of change. J S Am Earth Sci 16:125–131

    Article  Google Scholar 

  • Kennett JP, Cannariato KG, Hendy IL, Behl RJ (2003) Methane hydrates in Quaternary climate change: the clathrate gun hypothesis. American Geophysical Union, Washington

    Book  Google Scholar 

  • Klauda JB, Sandler SI (2001) Modeling gas hydrate phase equilibria in laboratory and natural porous media. Industrial Eng Chem Res 40:4197–4208

    Article  Google Scholar 

  • Kvenvolden KA (1998) A primer on the geological occurrence of gas hydrate. In: Henriet JP, Mienert J (eds) Gas hydrates: relevance to world margin stability and climate change. Geological Society, London, pp 9–30

    Google Scholar 

  • Lange D (2008) The South Chilean subduction zone between 41° and 43.5°S: seismicity, structure and state of stress. Dissertation, University of Potsdam, Potsdam

  • Liu Z, Bleisten N (1995) Migration velocity analysis: theory and an iterative algorithm. Geophysics 60:142–153

    Article  Google Scholar 

  • MacKay ME, Jarrard RD, Westbrook GK, Hyndman RD (1994) Origin of bottom-simulating reflectors: geophysical evidence from the Cascadia accretionary prism. Geology 22:459–462

    Article  Google Scholar 

  • Melnick D, Echtler HP (2006) Inversion of forearc basins in south-central Chile caused by rapid glacial age trench fill. Geology 34:709–712

    Article  Google Scholar 

  • Mienert J, Vanneste M, Bünz S, Andreassen K, Haflidasson H, Sejrup HP (2005) Ocean warming and gas hydrate stability on the mid-Norwegian margin at Storegga Slide. Mar Pet Geol 2:233–244

    Article  Google Scholar 

  • Milkov AV (2004) Global estimates of hydrate-bound gas in marine sediments: how much is really out there? Earth-Sci Rev 66:183–197

    Article  Google Scholar 

  • Morales E (2003) Methane hydrates in the Chilean continental margin. J Biotechnol. http://ejb.ucv.cl/content/vol6/issue2/issues/1/

  • Rabassa J, Clapperton C (1990) Quaternary glaciations of the Southern Andes, Quaternary glaciations in the Southern Hemisphere. Quat Sci Rev 9:153–174

    Article  Google Scholar 

  • Roberts HH, Hardage BA, Shedd WW, Hunt J Jr (2006) Seafloor reflectivity—an important seismic property for interpreting fluid/gas expulsion geology and the presence of gas hydrate. Leading Edge 25:620–628

    Article  Google Scholar 

  • Ruppel C (1997) Anomalously cold temperatures observed at the base of the gas hydrate stability zone on the US passive margin. Geology 25:699–702

    Article  Google Scholar 

  • Sandwell DT, Smith WHF (1997) Marine gravity anomaly from Geosat and ERS-1 satellite altimetry. J Geophys Res 102:10039–10054

    Article  Google Scholar 

  • Shipley TH, Houston MH, Buffler RT, Shaub FJ, McMillen KJ, Ladd JW, Worzel JL (1979) Seismic reflection evidence for the widespread occurrence of possible gas hydrate horizons on continental slopes and rises. AAPG Bull 63:2204–2213

    Google Scholar 

  • Sloan ED (1998) Clathrate hydrates of natural gases. Marcel Dekker, New York

    Google Scholar 

  • Tinivella U (1999) A method for estimating gas hydrate and free gas concentrations in marine sediments. Boll Geofis Teorica Applicata 40:19–30

    Google Scholar 

  • Tinivella U (2002) The seismic response to overpressure versus gas hydrate and free gas concentration. J Seismic Explor 11:283–305

    Google Scholar 

  • Tinivella U, Accaino F (2000) Compressional velocity structure and Poisson’s ratio in marine sediments with gas hydrate and free gas by inversion of reflected and refracted seismic data (South Shetland Islands, Antarctica). Mar Geol 164:13–27

    Article  Google Scholar 

  • Tinivella U, Accaino F, Camerlenghi A (2002) Gas hydrate and free gas distribution from inversion of seismic data on the South Shetland margin (Antarctica). Mar Geophys Res 23:109–123

    Article  Google Scholar 

  • Vargas Cordero I (2009) Gas hydrate occurrence and morpho-structures along Chilean margin. Dissertation, University of Trieste, Trieste

  • Yilmaz O (2001) Seismic data analysis: processing, inversion and interpretation of seismic data. Society of Exploration Geophysicists, Tulsa

    Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Joyce Alsop and Volkmar Damm for seismic data provided by the Lamont Doherty Earth Laboratory (LDEO), USA and the Federal Institute for Geosciences and Natural Resources (BGR), Germany respectively. We thank Ernest Ohene Asare and Frank Calixto Mory for useful English revision. This work was partially supported by The International Centre for Theoretical Physics (Trieste).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan de la Cruz Vargas Cordero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vargas Cordero, I., Tinivella, U., Accaino, F. et al. Analyses of bottom simulating reflections offshore Arauco and Coyhaique (Chile). Geo-Mar Lett 30, 271–281 (2010). https://doi.org/10.1007/s00367-009-0171-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-009-0171-5

Keywords

Navigation