Skip to main content
Log in

Opacity volume based halo generation and depth-dependent halos

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Halos are generally used to enhance depth perception and display spatial relationships in illustrative visualization. In this paper, we present a simple and effective method to create volumetric halo illustration. At the preprocessing stage, we generate, on graphics hardware, a view-independent halo intensity volume, which contains all of the potential halos around the boundaries of features, based on the opacity volume. During halo rendering, the halo intensity volume is used to extract halos only around the contours of structures for the current viewpoint. The performance of our approach is significantly faster than previous halo illustration methods, which perform both halo generation and rendering during direct volume rendering. We further propose depth-dependent halo effects, including depth color fading and depth width fading. These halo effects adaptively modulate the visual properties of halos to provide more perceptual cues for depth interpretation. Experimental results demonstrate the efficiency of our proposed approach and the effectiveness of depth-dependent halos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Appel, A., Rohlf, F.J., Stein, A.J.: The haloed line effect for hidden line elimination. In: Proceedings of ACM SIGGRAPH ’79, pp. 151–157 (1979)

    Chapter  Google Scholar 

  2. Bruckner, S., Gröller, M.E.: Exploded views for volume data. IEEE Trans. Vis. Comput. Graph. 12(5), 1077–1084 (2006)

    Article  Google Scholar 

  3. Bruckner, S., Gröller, M.E.: Enhancing depth-perception with flexible volumetric halos. IEEE Trans. Vis. Comput. Graph. 13(6), 1344–1351 (2007)

    Article  Google Scholar 

  4. Chiu, K., Herf, M., Shirley, P., Swamy, S., Wang, C., Zimmerman, K.: Spatially nonuniform scaling functions for high contrast images. In: Proceedings of Graphics Interface ’93, pp. 245–253 (1993)

    Google Scholar 

  5. Everts, M.H., Bekker, H., Roerdink, J.B., Isenberg, T.: Depth-dependent halos: illustrative rendering of dense line data. IEEE Trans. Vis. Comput. Graph. 12(6), 1299–1306 (2009)

    Article  Google Scholar 

  6. Interrante, V., Grosch, C.: Strategies for effectively visualizing 3D flow with volume LIC. In: Proceedings of Visualization’97, pp. 421–424 (1997)

    Google Scholar 

  7. Kindlmann, G., Durkin, J.W.: Semi-automatic generation of transfer functions for direct volume rendering. In: Proceedings of the 1998 IEEE Symposium on Volume Visualization (VVS’98), pp. 79–86. ACM, New York (1998)

    Chapter  Google Scholar 

  8. Kindlmann, G., Whitaker, R., Tasdizen, T., Möller, T.: Curvature-based transfer functions for direct volume rendering: methods and applications. In: Proceedings of Visualization ’03, pp. 513–520 (2003)

    Google Scholar 

  9. Levoy, M.: Display of surfaces from volume data. IEEE Comput. Graph. Appl. 8(3), 29–37 (1988)

    Article  Google Scholar 

  10. Lu, A., Morris, C.J., Taylor, J., Ebert, D., Hansen, C., Rheingans, P., Hartner, M.: Illustrative interactive stipple rendering. IEEE Trans. Vis. Comput. Graph. 9(2), 127–138 (2003)

    Article  Google Scholar 

  11. Nagy, Z., Schneider, J., Westermann, R.: Interactive volume illustration. In: Proceedings of Vision, Modeling and Visualization, pp. 497–504 (2002)

    Google Scholar 

  12. Paris, S., Kornprobst, P., Tumblin, J., Durand, F.: A gentle introduction to bilateral filtering and its applications. In: ACM SIGGRAPH 2007 Course Notes (2007)

    Google Scholar 

  13. Rautek, P., Bruckner, S., Gröller, M.E., Viola, I.: Illustrative visualization—new technology or useless tautology? Comput. Graph. Q. 42(3) (2008). http://www.siggraph.org/publications/newsletter/volume-42-number-3/illustrative-visualization-2013-new-technology-or-useless-tautology

  14. Rheingans, P., Ebert, D.S.: Volume illustration: nonphotorealistic rendering of volume models. IEEE Trans. Vis. Comput. Graph. 7(3), 195–202 (2001)

    Article  Google Scholar 

  15. Ruiz, M., Boada, I., Feixas, M., Sbert, M.: Interactive volume illustration using intensity filtering. In: Proceedings of Computational Aesthetics in Graphics, Visualization, and Imaging 2010, pp. 51–58 (2010)

    Google Scholar 

  16. Svakhine, N.A., Ebert, D.S.: Interactive volume illustration and feature halos. In: Proceedings of Pacific Graphics ’03, pp. 347–354 (2003)

    Google Scholar 

  17. Svakhine, N.A., Ebert, D.S., Andrews, W.M.: Illustration-inspired depth enhanced volumetric medical visualization. IEEE Comput. Graph. Appl. 15(1), 77–86 (2009)

    Google Scholar 

  18. Tao, Y.B., Lin, H., Bao, H.J., Dong, F., Clapworthy, G.: Feature enhancement by volumetric unsharp masking. Vis. Comput. 25(5–7), 581–588 (2009)

    Article  Google Scholar 

  19. Tao, Y.B., Lin, H., Dong, F., Clapworthy, G.: Opacity volume based halo generation for enhancing depth perception. In: Proceedings of the International Conference on CAD/Graphics 2011, pp. 418–422 (2011)

    Google Scholar 

  20. Viola, I., Gröller, M.E.: Smart visibility in visualization. In: Proceedings of Computational Aesthetics in Graphics, Visualization and Imaging ’05, pp. 209–216 (2005)

    Google Scholar 

  21. Viola, I., Kanitsar, A., Gröller, M.E.: Importance-driven feature enhancement in volume visualization. IEEE Trans. Vis. Comput. Graph. 11(4), 408–418 (2005)

    Article  Google Scholar 

  22. Šoltészová, V., Patel, D., Viola, I.: Chromatic shadows for improved perception. In: Proceedings of Non-Photorealistic Animation and Rendering (NPAR 2011), pp. 105–115. ACM, Vancouver (2011)

    Google Scholar 

  23. Wang, L., Zhao, Y., Mueller, K., Kaufman, A.: The magic volume lens: an interactive focus+context technique for volume rendering. In: Proceedings of Visualization ’05, pp. 47–54 (2005)

    Google Scholar 

  24. Wenger, A., Keefe, D.F., Zhang, S., Laidlaw, D.H.: Interactive volume rendering of thin thread structures within multivalued scientific datasets. IEEE Comput. Graph. Appl. 10(6), 664–672 (2003)

    Google Scholar 

  25. Yuan, X., Chen, B.: Illustrating surfaces in volume. In: Proceedings of Joint IEEE/EG Symposium on Visualization ’04, pp. 9–16 (2004)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by 863 Program Project 2012AA12A404, NFS of China (No. 60873122 and No. 60903133), and the Open Project Program of the State Key Lab of CAD&CG (Grant No. A1012), Zhejiang University. The data sets are courtesy of Olaf Ronneberger, SFB 382, General Electric, Philips Research, VoreenPub.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yubo Tao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, Y., Wang, C., Lin, H. et al. Opacity volume based halo generation and depth-dependent halos. Vis Comput 29, 287–296 (2013). https://doi.org/10.1007/s00371-012-0764-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-012-0764-2

Keywords

Navigation