Skip to main content

Advertisement

Log in

Tobacco bacterial wilt can be biologically controlled by the application of antagonistic strains in combination with organic fertilizer

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Bacterial wilt caused by Ralstonia solanacearum is one of the most serious tobacco diseases worldwide. Brevibacillus brevis (L-25) and Streptomyces rochei (L-9) with strong inhibitory effects on R. solanacearum in vitro were isolated from the rhizosphere of a healthy tobacco plant in a severely wilt-diseased field. Pot and field experiments were conducted to evaluate the biocontrol effect of the isolated antagonists alone and in combination with organic fertilizer. In pot experiment, the control efficacy was 92.3–100 % in the treatments applied with L-25 and L-9 alone or together with organic fertilizers. When bioorganic fertilizer containing L-9 and L-25 was applied to the soil in field condition, the control efficacies were 95.4 and 30.0 in the Anhui and Guizhou field plots, respectively. The counts of bacteria and actinomycetes in rhizosphere soil were significantly increased (p ≤ 0.05) under all antagonist applications compared with CK (PR). In contrast, fungal and R. solanacearum densities in the rhizosphere soil applied with antagonists were much lower than the CK (PR) rhizosphere. Combined application of the two antagonists had better effect than single antagonist treatments. The antagonists were more effective when they were combined with organic fertilizer as compared with the antagonistic strains only. These results allow us to conclude that a combination of the biocontrol agents, L-25 and L-9, together with organic fertilizers can effectively control bacterial wilt by affecting soil microbial structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adesemoye AO, Torbert HA, Kloepper JW (2010) Increased plant uptake of nitrogen from 15N-depleted ferlizer using plant growth-promoting rhizobacteria. Appl Soil Ecol 46:54–58

    Article  Google Scholar 

  • Akhter MJ, Asghar HN, Shahzad K, Arshad M (2009) Role of plant growth promoting rhizobacteria applied in combination with compost and mineral fertilizers to improve growth and yield of wheat (Triticum aestivum L.). Pak J Bot 41:381–390

    Google Scholar 

  • Aley EBFLGP, Elphinstone J (1995) Culture media for Ralstonia solanacearum isolation, identification and maintenance. Fitopatologia 30:126–130

    Google Scholar 

  • Anuratha CS, Gnanamanickam SS (1990) Biological control of bacterial wilt caused by Pseudomonas solanacearum in India with antagonistic bacteria. Plant Soil 124:109–116

    Article  Google Scholar 

  • Arwiyanto T, Goto M, Tsuyumu S, Takikawa Y (1994) Biological control of bacterial wilt of tomato by an avirulent strain of Pseudomonas solanacearum isolated from Strelitzia reginae. Ann Phytopathol Soc Japan 60:421–430

    Article  Google Scholar 

  • Atta HM, Ahmad MS (2009) Antimycin-A antibiotic biosynthesis produced by Streptomyces sp. AZ-AR-262: taxonomy, fermentation, purification and biological activities. Aust J Basic Appl Sci 3:126–135

    CAS  Google Scholar 

  • Berg G (1996) Rhizobacteria of oilseed rape antagonistic to Verticillium dehliae var. longisporum STARK. Plant Dis Prot 103:20–30

    Google Scholar 

  • Boehm MJ, Hoitink HAJ (1992) Sustenance of microbial activity in potting mixes and its impact on severity of Pythium root rot of poinsettia. Phytopathology 82:259–264

    Article  Google Scholar 

  • Boehm MJ, Madden LV, Hoitink HAJ (1993) Effect of organic matter decomposition level on bacterial species diversity and composition in relationship to Pythium damping-off severity. Appl Environ Microbiol 59:4171–4179

    PubMed  CAS  Google Scholar 

  • Bonaterra A, Ruz L, Badosa E, Pinochet J, Montesinos E (2003) Growth promotion of Prunus rootstocks by root treatment with specific bacterial strains. Plant Soil 255:555–569

    Article  CAS  Google Scholar 

  • Bottomley PJ, Yarwood RR, Kageyama SA, Waterstripe KE, Williams MA, Cromack K Jr, Myrold DD (2006) Responses of soil bacterial and fungal communities to reciprocal transfers of soil between adjacent coniferous forest and meadow vegetation in the Cascade Mountains of Oregon. Plant Soil 289:35–45

    Article  CAS  Google Scholar 

  • Cao Y, Zhang Z, Ling N, Yuan Y, Zheng X, Shen B, Shen Q (2011) Bacillus subtilis SQR9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol Fert Soils 47:495–506

    Article  CAS  Google Scholar 

  • Cartwright DK, Spurr HWJ (1998) Biological control of Phytophthora parasitica var. Nicotianae on tobacco seedlings with non-pathogenic binucleate Rhizoctonia fungi. Soil Biol Biochem 30:1879–1884

    Article  CAS  Google Scholar 

  • Catello P, Riccardo S, Alessandro P, Felice S, Giuliano B (2011) Compost amendments enhance peat suppressiveness to Pythium ultimum, Rhizoctonia solani and Sclerotinia minor. Biol Control 56:115–124

    Article  Google Scholar 

  • Chandramohan D, Mahadevan A (1968) Indole acetic acid metabolism in soils. Ind Acad Sci 37:112–113

    CAS  Google Scholar 

  • Chen C. (2000) The measurement of SOD activity by NBT. Higher Education

  • Chen R, Zhu X, Wang Z (1997) A report of investigating and studying tobacco infectious diseases of 16 main tobacco producing provinces (regions) in China. Chiese Tob Sci 4:1–7

    Google Scholar 

  • Chen T, Wang M, Jiang S, Xiong S, Wei H (2011) The application of polymerase chain reaction–denaturing gradient gel electrophoresis (PCR–DGGE) method in microbial screening. Afri J Biotechnol 10:9387–9395

    CAS  Google Scholar 

  • Chet I, Ordentlich A, Shapira R, Oppenheim A (1990) Mechanisms of biocontrol of soil-borne plant pathogens by Rhizobacteria. Plant Soil 129:85–92

    Article  Google Scholar 

  • Compant S, Clement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Dai Y, Su Y, Wei W, Wu J, Fan Y (2009) Effect of top excision on the potassium accumulation and expression of potassium channel genes in tobacco. J Exp Bot 60:279–289

    Article  PubMed  CAS  Google Scholar 

  • Dastager SG, Deepa CK, Pandey A (2010) Isolation and characterization of novel plant growth promoting Micrococcus sp NII-0909 and its interaction with cowpea. Plant Physiol Biochem 48:987–992

    Article  PubMed  CAS  Google Scholar 

  • del Mar Alguacil M, Diaz-Pereria E, Caravaca F, Fernandez DA, Roldan A (2009) Increased diversity of arbuscular mycorrhizal fungi in a long-term field experiment via application of organic amendments to a semiarid degraded soil. Appl Environ Microbiol 75:4254–4263

    Article  CAS  Google Scholar 

  • Denny TP (2006) Plant pathogenic Ralstonia species. Springer, Dordrecht

    Google Scholar 

  • Devi TV, Vizhi RM, Sakthivel N, Gnanamanickam SS (1989) Biological control of sheath-blight of rice in India with antagonistic bacteria. Plant Soil 119:325–330

    Article  Google Scholar 

  • Edwards SG, Seddon B (2001) Mode of antagonism of Brevibacillus brevis against Botrytis cinerea in vitro. J Appl Microbiol 91:652–9

    Article  PubMed  CAS  Google Scholar 

  • Egamberdieva D, Kucharova Z, Davranov K, Berg G, Makarova N, Azarova T, Chebotar V, Tikhonovich I, Kamilova F, Validov SZ, Lugtengerg B (2010) Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biol Fert Soil 47:197–205

    Article  Google Scholar 

  • El-Abyad MS, El-Sayed MA, El-Shanshoury AR, El-Sabbagh SM (1993) Towards the biological control of fungal and bacterial diseases of tomato using antagonistic Streptomyces spp. Plant Soil 149:185–195

    Article  Google Scholar 

  • Ge C, Liu B, Zhu Y, Lin Y, Xiao R (2004) Study on the methods on identifying the virulence of Ralstonia solanacearum using tissue cultured tomatoes. Wuyi Sci J 20:13–16

    Google Scholar 

  • Geels FP, Schippers B (1983) Selection of antagonistic fluorescent Pseudomonas spp. and their root colonization and persistence following treatment of seed potatoes. Phytopath Z 108:193–206

    Article  Google Scholar 

  • Genin S, Boucher C (2002) Ralstonia solanacearum: secrets of a major pathogen unveiled by analysis of its genome. Mol Plant Pathol 3:111–118

    Article  PubMed  Google Scholar 

  • Gholami A, Shahsavani S, Nezarat S (2009) The effect of plant growth promoting rhizobacteria (PGPR) on germination seedling growth and yield of maize. Int Biol Life Sci 5:35–40

    Google Scholar 

  • Green SJ, Inbar E, Michel FC Jr, Hadar Y, Minz D (2006) Succession of bacterial communities during early plant development: transition from seed to root and effect of compost amendment. Appl Environ Microbiol 72:3975–3983

    Article  PubMed  CAS  Google Scholar 

  • Green SJ, Leigh MB, Neufeld JD (2010) Denaturing gradient gel electrophoresis (DGGE) for microbial community analysis. Springer, Berlin

    Google Scholar 

  • Guetsky R, Shtienberg D, Elad Y, Dinoor A (2001) Combining biocontrol agents to reduce the variability of biological control. Phytopathology 91:621–627

    Article  PubMed  CAS  Google Scholar 

  • Hao Y, Wei J, Liu C, Wang Y, Wang W (2009) Effect of biological soil amendment reducing on replant diseases of cucumber. Acta Agric Boreali-Sin 24:231–234

    Google Scholar 

  • Hiddink GA, van Bruggen AHC, Termorshuizen AJ, Raajjmakers JM, Semenov AV (2005) Effect of organic management of soils on suppressiveness to Gaeumannomyces graminis var. tritici and its antagonist, Pseudomonas fluorescens. Eur J Plant Pathol 113:417–435

    Article  Google Scholar 

  • Huang J, Xiong X, Li W, Li X, Xing J, Liu H (2007) Carbazole degradation by Klebsiella sp. Lsse-H2. Chin J Proc Eng 7:113–118

    CAS  Google Scholar 

  • Huang X, Chen L, Ran W, Shen Q, Yang X (2011) Trichoderma sp. strain SQR-T37 and its bio-organic fertilize could control Rhizoctonia solani damping-off disease in cucumber seedlings mainly by the mycoparasitism. Appl Microbiol Biot 91:741–755

    Article  CAS  Google Scholar 

  • Kafili T, Razavi SH, Djomeh ZE, Naghavi MR, Alvarez-Martin P, Mayo B (2009) Microbial characterization of Iranian traditional Lighvan cheese over manufacturing and ripening via culturing and PCR–DGGE analysis: identification and typing of dominant lactobacilli. Eur Food Res Technol 229:83–92

    Article  CAS  Google Scholar 

  • Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7:1809–1817

    Article  PubMed  CAS  Google Scholar 

  • Karlidag H, Esitken A, Turan M, Sahin F (2007) Effect of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Sci Hortic 114:16–20

    Article  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • King SR, Davis AR, Liu W, Levi A (2008) Grafting for disease resistance. Hortscience 43:1673–1676

    Google Scholar 

  • Koki T, Makito K (2000) Suppression of Ralstonia solanacearum in soil following colonization by other strains of R. solanacearum. Jap Soc Soil Sci and Plant Nutr 46:449–459

    Google Scholar 

  • Korhonen TK, Nurmiaho-Lassila E-L, Laakso T, Haahtela K (1986) Adhesion of fimbriated nitrogen-fixing enteric bacteria to roots of grasses and cereals. Plant Soil 90:59–69

    Article  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings Bioinformatics 5:150–163

    Article  CAS  Google Scholar 

  • Laidi RF, Amany LK, Elshafei AM, Cheikh B (2006) Taxonomy, identification and biological activities of a novel isolate of Streptomyces tendae. Arab J Biotech 9:427–436

    Google Scholar 

  • Lang J, Hu J, Shen Q (2012) Fungal diversity of soils with cotton Verticillium wilt as affected by application of bio-organic fertilizer using DGGE and real-time PCR. Biol Fert Soils 48:191–203

    Article  Google Scholar 

  • Lemessa F, Zeller W (2007) Screening rhizobacteria for biological control of Ralstonia solanacearum in Ethiopia. Biol Control 42:336–344

    Article  Google Scholar 

  • Li S, Gu L, Liu K, Liao Z (2009) Effects of combined application of organic fertilizers on the control of soilborne diseases and the regulation of soil microbial diversity. Plant Nutr Fertil Sci 15:965–969

    Google Scholar 

  • Li S, Zhang N, Zhang Z, Luo J, Shen B, Zhang R, Shen Q (2012) Antagonist Bacillus subtilis HJ5 can control Verticillium wilt of cotton by root colonization and biofilm formation. Biol Fert Soils, on line. doi:10.1007/s00374-012-0718-x

  • Ling N, Xue C, Huang Q, Yang X, Xu Y, Shen Q (2010) Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt. Biocontrol 55:673–683

    Article  Google Scholar 

  • Liu Q, Li Z, Tang Z, Zeng X (1999) Biological control of tobacco bacterial wilt by soil amendments and antagonistic bacteria. Chin J Biol Contr 15:94–95

    Google Scholar 

  • Liu X, He P, Jin J (2006) Advances in effect of potassium nutrition on plant disease resistance and its mechanism. Plant Nutr Fertil Sci 12:445–450

    CAS  Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Ann Rev Phytopathol 39:461–490

    Article  CAS  Google Scholar 

  • Luo J, Ran W, Hu J, Yang X, Xu Y, Shen Q (2010) Application of bio-organic fertilizer significantly affected fungal diversity of soils. Soil Sci Soc Am J 74:2039–2048

    Article  CAS  Google Scholar 

  • McLarghlin RJ, Sequeira L, Weingartner DP (1990) Biocontrol of bacterial wilt of potato with an avirulent strain of Pseudomonas solanacearum: interactions with root-knot nematodes. Am Pot J 67:93–107

    Article  Google Scholar 

  • Mishra S, Jyot J, Kuhad RC, Lal B (2001) Evaluation of inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil. Appl Environ Microbiol 67:1675–1681

    Article  PubMed  CAS  Google Scholar 

  • Monni S, Bucking H, Kottke I (2002) Ultrastructural element localization by EDXS in Empetrum nigrum. Micron 33:339–351

    Article  PubMed  CAS  Google Scholar 

  • Moschler WW, Shear GM, Rogers MJ, Terrill TT (1971) No-tillage tobacco studies in Virginia. Tob Sci 15:12–14

    Google Scholar 

  • Nassar AH, El-Tarabily KA, Sivasithamparam K (2005) Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize(Zea mays L.) roots. Biol Fert Soils 42:97–108

    Article  CAS  Google Scholar 

  • Nejad P, Johnson PA (2000) Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato. Biol Control 18:208–215

    Article  Google Scholar 

  • Nelson DM, Ohene-Adjei S, Hu FS, Cann IKO, Mackie RI (2007) Bacterial diversity and distribution in the holocene sediments of a northern temperate lake. Micob Ecol 54:252–263

    Article  CAS  Google Scholar 

  • Ofek M, Hadar Y, Minz D (2009) Comparison of effects of compost amendment and of single-strain inoculation on root bacterial communities of young cucumber seedlings. Appl Environ Microbiol 75:6441–6450

    Article  PubMed  CAS  Google Scholar 

  • Opelt K, Gerg G (2004) Diversity and antagonistic potential of bacteria associated with bryophytes from nutrient-poor habitats of the Baltic Sea Coast. Appl Environ Microbiol 70:6569–6579

    Article  PubMed  CAS  Google Scholar 

  • Peng X, Zhou G, Deng Z, Kuang C, Luo K, Hongyan L (2007) Screening, identification and control efficacy of tobacco antagonistic endophytic bacteria against Ralstonia solanacearum. Acta Phytopathol Sin 37:670–674

    Google Scholar 

  • Piao Z, Yang L, Zhao L, Yin S (2008) Actinobacterial community structure in soils receiving long-term organic and inorganic amendments. Appl Environ Microbiol 74:526–530

    Article  PubMed  CAS  Google Scholar 

  • Qi Y, Xie Y, Zhang X, Zhang H (2004) Study of DNA extraction methods in Fusarium oxysporum f. sp. cubense. Biotechnol 14:32–34

    Google Scholar 

  • Qiu M, Zhang R, Xue C, Zhang S, Li S, Zhang N, Shen Q (2012) Application of a novel bioorganic fertilizer can control Fusarium wilt by regulating microbial community of cucumber rhizosphere soils. Biol Fert Soils. doi:10.1007/s00374-012-0675-4

  • Reddy NG, Ramakrishna DPN, Gopal SVR (2011) A morphological, physiological and biochemical studies of marine Streptomyces rochei (MTCC 10109) showing antagonistic activity against selective human pathogenic microorganisms. Asian J Biol Sci 4:1–14

    Article  CAS  Google Scholar 

  • Ren X, Wei G, Qi Q, Fang Z (1981) Comparative studies of isolates of Pseudomonas solanacearum Smith from different host plants. Acta Phytopathol Sin 11:1–7

    Google Scholar 

  • Ren X, Zhang N, Cao M, Wu K, Shen Q, Huang Q (2012) Biological control of tobacco black shank and colonization of tobacco roots by a Paenibacillus polymyxa strain C5. Biol Fert Soils 48:613–620

    Article  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganism to improve the acquisition of phosphate by plant. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–25

    PubMed  CAS  Google Scholar 

  • Schonfeld J, Heuer H, Van Elsas JD, Smalla K (2003) Specific and sensitive detection of Ralstonia solanacearum in soil on the basis of PCR amplification of fliC fragments. Appl Environ Microbiol 69:7248–56

    Article  PubMed  CAS  Google Scholar 

  • Seddon B, McHugh RC, Schmitt A (2000) Brevibacillus brevis—a novel candidate biocontrol agent with broad-spectrum antifungal activity. The BCPC conference: pests and diseases. Brighton Hilton Metropole Hotel, Brighton, pp 563–570

    Google Scholar 

  • Shanab RAIA (2007) Characterization and 16S rDNA identification of thermo-tolerant bacteria isolated from hot springs. J Appl Sci Res 3:994–1000

    Google Scholar 

  • Shida O, Takagi H, Kadowaki K, Komagata K (1996) Proposal for two new genera. Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int J Syst Bacteriol 46:939–946

    Article  PubMed  CAS  Google Scholar 

  • Smith E.F. (1896) A bacterial disease of the tomato, eggplant and Irish potato (Bacillus solanacearum n.sp.). US Dept. Agric Div Veg Phys Path Bul pp. 1-28

  • Strigul NS, Kravchenko LV (2006) Mathematical modeling of PGPR inoculation. Environ Model Softw 21:1158–1171

    Article  Google Scholar 

  • Tjamos EC, Tsitsigiannis DI, Tjamos SE, Antoniou PP, Katinakis P (2004) Selection and screening of endorhizosphere bacteria from solarized soils as biocontrol agents against Verticillium dahliae of solanaceous hosts. Eur J Plant Pathol 110:35–44

    Article  CAS  Google Scholar 

  • Tobacco N.A.T.C.o (1996) Tobacco standards of People's Republic of China, Grade an investigating method of tobacco disease. State Tobacco Monopoly Administration, Beijing

    Google Scholar 

  • Trillas MI, Casanova E, Cotxarrera L, Ordovas J, Borrero C, Aviles M (2006) Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings. Biol Control 39:32–38

    Article  Google Scholar 

  • Van Alfen NK (1989) Reassessment of plant wilt toxins. Annu Rev Phytopathol 27:533–550

    Article  Google Scholar 

  • Wei Z, Yang X, Yin S, Shen Q, Ran W, Xu Y (2011) Efficacy of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field. Appl Soil Ecol 48:152–159

    Article  Google Scholar 

  • Xu S, Xiao B, Li Y (2009) Progress on TMV resistant breeding of tobacco. Chin Agric Sci Bull 25:91–94

    CAS  Google Scholar 

  • Yabuuchi E, Kosako Y, Yano I, Hotta H, Nishiuchi Y (1995) Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. nov., Ralstonia solanacearum (Smith 1896) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov. Microbiol Immunol 39:897–904

    PubMed  CAS  Google Scholar 

  • Yang X, Chen L, Yong X, Shen Q (2011) Formulations can affect colonization and biocontrol efficiency of Trichoderma harzianum SQR-T037 against Fusarium wilt of cucumbers. Biol Fert Soils 47:239–248

    Article  Google Scholar 

  • Yi Y, Yin H, Luo K, Liu X, Liu E (2007a) Isolation and identification of endophytic Brevibacillus brevis and its biocontrol effect against tobacco bacterial wilt. Acta Phytopathol Sin 37:301–306

    Google Scholar 

  • Yi Y, Liu R, Yin H, Luo K, Liu E, Liu X (2007b) Isolation, identification and field control efficacy of endophytic strain against tobacco bacterial wilt. Chin J Appl Ecol 18:554–558

    CAS  Google Scholar 

  • Zedeh PA, Rastin NS, Rahmani HA, Khavazi K, Soltani A, Nejati ARS, Miransari M (2010) Plant growth-promoting activities of fluorescent pseudomonads isolated from the Iranian soils. Acta Physiol Plant 32:281–288

    Article  Google Scholar 

  • Zhang S, Zou Y, Wu S, Hu J, Zhou H (2008a) Avirulent strain of Ralstonia solanacearum inducing plant systemic acquired resistance in tomato. J Xiamen Univ (Nat Sci) 47:31–35

    Google Scholar 

  • Zhang S, Raza W, Yang X, Hu J, Huang Q, Xu Y, Liu X, Ran W, Shen Q (2008b) Control of Fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer. Biol Fert Soils 44:1073–1080

    Article  Google Scholar 

  • Zhang H, Yu Z, Huang Q, Xiao X, Wang X, Zhang F, Wang X, Liu Y, Hu C (2011a) Isolation, identification and characterization of phytoplankton-lytic bacterium CH-22 against Microcystis aeruginosa. Limnologica 41:70–77

    Article  CAS  Google Scholar 

  • Zhang N, Wu K, He X, Li S, Zhang Z, Shen B, Yang X (2011b) A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11. Plant Soil 344:87–97

    Article  CAS  Google Scholar 

  • Zhao B, He S (2002) Microbial experiment. Beijing Science, Beijing

    Google Scholar 

  • Zhao J, Lan C, Chen Q, Qiu R, Weng Q (2006) Isolation of endophytic bacteria from tomato and selection of antagonistic bacteria to tomato bacterial wilt disease. Wuyi Sci J 22:49–54

    Google Scholar 

  • Zhao Q, Dong C, Yang X, Mei X, Ran W, Shen Q, Xu Y (2011a) Biocontrol of Fusarium wilt disease for Cucumis melo melon using bio-organic fertilized. Appl Soil Ecol 47:67–75

    Article  Google Scholar 

  • Zhao Q, ShenN Q, Ran W, Xiao T, Xu D, Xu Y (2011b) Inoculation of soil by Bacillus subtilis Y-IVI improves plant growth and colonization of the rhizosphere and interior tissues of muskmelon (Cucumis melo L.). Biol Fert Soils 47:507–514

    Article  CAS  Google Scholar 

  • Zheng J, Zhang J, Xu Y, Wang Z (1994) The control of tobacco bacterial wilt with avirulent bacteriocin-producing strains of Pseudomonas slanacearum. China Tob 3:21–24

    Google Scholar 

  • Zhu Y, Zhou H, Liu B, Zhang S, Zhu H, Zhu H, Che J, Cao Y (2004) Study on the growing competition relationship between virulent and avirulent strains Ralstonia solanacearum isolated from tomato. J Xiamen Univ (Nat Sci) 43:97–101

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), by 111 project (B12009), and by the Agricultural Ministry of China (201103004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qirong Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Shi, J., Feng, Y. et al. Tobacco bacterial wilt can be biologically controlled by the application of antagonistic strains in combination with organic fertilizer. Biol Fertil Soils 49, 447–464 (2013). https://doi.org/10.1007/s00374-012-0740-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-012-0740-z

Keywords

Navigation