Skip to main content

Advertisement

Log in

The molecular microbial perspective of organic matter turnover and nutrient cycling in tropical agroecosystems - What do we know?

  • Review
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

A primary goal of low-input small-holder farming systems in the tropics is the appropriate management of organic matter (OM) turnover and nutrient cycling via adapted agricultural practices. These emphasize the promotion of soil organic matter (SOM) turnover and carbon (C) sequestration, nutrient use efficiency and soil microbial activity. Soil microbial communities are acknowledged as key players in the terrestrial C and nutrient (e.g., nitrogen (N) and phosphorus (P)) cycles. They respond sensitively to agricultural management with shifts in their community structure as well as functional properties (i.e., decomposition and mineralization). This may be in particular evident for tropical, agriculturally managed soils which show an accelerated microbial decomposition activity induced by favorable climatic and unique physicochemical soil conditions. Molecular techniques advanced the understanding about the composition of soil microbial communities and partially their functions standing in close interaction with SOM dynamics. So far, such methods have rarely been used for elucidating microbial community dynamics including composition and functioning in tropical soils under agricultural use. The primary objective of this article is thus to summarize the existing literature on tropical soil microbial ecology as drivers of OM turnover and crop nutrient supply in soils under agricultural use. This included the highlighting of the latest efforts in deploying particularly nucleic acid-based, cultivation-independent techniques to study the compositional status of soil microbial decomposer communities and, to a smaller extent, their functional attributes in response to land use change and OM management in tropical agroecosystems. The majority of available studies on tropical microbial ecology so far concentrated primarily on the description of compositional microbial community dynamics. It was, however, hardly questioned if detected structural microbial community changes substantially influenced microbial key processes which actually maintain ecosystem functioning and soil productivity. This merit remains substantially unexplored in tropical soils under agricultural use as altered microbial community compositions may be only transient with time with potentially negligible consequences on relevant microbial functioning. There are, however, a few specialized key functional microbial groups whose presence or absence may actually affect the performance, speed and recovery of important ecosystem processes including the transformation of OM and supply of crop nutrients (e.g., N and P). These may finally regulate and determine the productivity of tropical, low-input small-holder farming systems which rely essentially on indigenous soil fertility. Consequently, research recommendations are discussed with emphasis on unique characteristics of tropical environments and tropical agroecosystems to improve the current understanding about the link between microbial key players and productivity of tropical, agriculturally managed soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. P Natl Acad Sci USA 105:11512–11519

    Article  CAS  Google Scholar 

  • Appuhn A, Jörgensen RG (2006) Microbial colonisation of roots as a function of plant species. Soil Biol Biochem 38:1041–1051

    Google Scholar 

  • Asari N, Ishihara R, Nakajima Y, Kimura M (2007) Succession and phylogenetic composition of eubacterial communities in rice straw during decomposition on the surface of paddy field soil. Soil Sci Plant Nutr 53:56–65

    Article  CAS  Google Scholar 

  • Bach H-J, Tomanova J, Schloter M, Munch JC (2002) Enumeration of total bacteria with genes for proteolytic activity in pure cultures and in environmental samples by quantitative PCR mediated amplification. J Microbiol Meth 49:235–245

    Article  CAS  Google Scholar 

  • Balser TC, Firestone MK (2005) Linking microbial community composition and soil processes in a California annual grassland and mixed-conifer forest. Biogeochemistry 73:395–415

    Article  CAS  Google Scholar 

  • Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedback. ISME J 2:805–814

    Article  PubMed  CAS  Google Scholar 

  • Bastida F, Moreno JL, Nicolas C, Hernandez T, Garcia C (2009) Soil metaproteomics: a review of an emerging environmental science. Significance, methodology and perspectives. Europ J Soil Sci 60:845–859

    Article  CAS  Google Scholar 

  • Bell LC, Bessho T (1993) Assessment of aluminum detoxification by organic materials. In: Mulongoy K, Merckx R (eds) Soil organic matter dynamics and sustainability of tropical agriculture. Wiley, Chichester, UK, pp 317–330

    Google Scholar 

  • Borneman J, Triplett EW (1997) Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl Environ Microbiol 63:2647–2653

    PubMed  CAS  Google Scholar 

  • Bossio DA, Girvan MS, Verchot L, Bullimore J, Borelli T, Albrecht A, Scow KM, Ball AS, Pretty JN, Osborn AM (2005) Soil microbial community response to land use change in an agricultural landscape of western Kenya. Microb Ecol 49:50–62

    Article  PubMed  CAS  Google Scholar 

  • Buckley HD, Schmidt MT (2002) Diversity and dynamics of microbial communities in soils from agro-ecosystems. Environ Microbiol 5:441–452

    Article  Google Scholar 

  • Bruce T, Martinez IB, Neto OM, Vicente ACP, Kruger RH, Thompson FL (2010) Bacterial community diversity in the Brazilian Atlantic forest soils. Microb Ecol 60:840–849

    Article  PubMed  CAS  Google Scholar 

  • Caesar-TonThat TC (2002) Soil binding properties of mucilage produced by a basidiomycete fungus in a model system. Mycol Res 106:930–937

    Article  Google Scholar 

  • Chan CO, Yang X, Fu Y, Feng Z, Sha L, Casper P, Zou Z (2006) 16S rRNA gene analyses of bacterial community structures in the soils of evergreen broad-leaved forests in south-west China. FEMS Microbiol Ecol 58:247–259

    Article  PubMed  CAS  Google Scholar 

  • Chotte J, Schwartzmann A, Bally R, Monrozier JL (2002) Changes in bacteria communities and Azospirillum diversity in soil fractions of a tropical soil under 3 or 19 years of natural fallow. Soil Biol Biochem 34:1083–1092

    Article  CAS  Google Scholar 

  • Conrad R, Klose M (2006) Dynamics of the methanotrophic archaeal community in anoxic rice soil upon addition of straw. Europ J Soil Sci 57:476–484

    Article  Google Scholar 

  • Cruz-Martínez K, Suttle KB, Brodie EL, Power ME, Andersen GL, Banfield JF (2009) Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland. ISME J 3:738–744

    Article  PubMed  CAS  Google Scholar 

  • Cupples AM, Shaffer EA, Chee-Sanford JC, Sims GK (2007) DNA buoyant density shifts during 15N-DNA stable isotope probing. Microbiol Res 162:328–334

    Article  PubMed  CAS  Google Scholar 

  • Davidson EA, Ackerman IL (1993) Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20:161–193

    Article  CAS  Google Scholar 

  • Denier van der Gon HAC, Neue HU (1995) Influence of organic matter incorporation on the methane emission from a wetland rice field. Global Biogeochem Cy 9:11–22

    Article  CAS  Google Scholar 

  • Detwiler RP (1986) Land use change and the global carbon cycle: the role of tropical soils. Biogeochemistry 2:67–93

    Article  CAS  Google Scholar 

  • Dinesh R, Ghosal Chaudhuri S, Sheeja TE (2004) Soil biochemical and microbial indices in wet tropical forests: effects of deforestation and cultivation. J Plant Nutr Soil Sci 167:24–32

    Article  CAS  Google Scholar 

  • Ding X, Zhang B, Zhang X, Yang X, Zhang X (2011) Effects of tillage and crop rotation on soil microbial residues in a rainfed agroecosystem of northeast China. Soil Till Res 114:43–49

    Article  Google Scholar 

  • Doran JW, Zeiss MR (2000) Soil health and sustainability: managing the biotic component of soil quality. Appl Soil Ecol 15:3–11

    Article  Google Scholar 

  • Edwards IP, Zak DR, Kellner H, Eisenlord SD, Pregitzer KS (2011) Simulated atmospheric N deposition alters fungal community composition and suppreses ligninolytic gene expression in a northern hardwood forest. PLoS One 6(6):e20421. doi:10.1371/journal.pone.0020421

    Article  PubMed  CAS  Google Scholar 

  • Eilers KG, Lauber CL, Knight R, Fierer N (2010) Shifts in community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biol Biochem 42:896–903

    Article  CAS  Google Scholar 

  • España M, Rasche F, Kandeler E, Brune T, Rodriguez B, Bending GD, Cadisch G (2011a) Identification of active bacteria involved in decomposition of complex maize and soybean residues in a tropical Vertisol using 15N-DNA stable isotope probing. Pedobiologia 54:187–193

    Article  CAS  Google Scholar 

  • España M, Rasche F, Kandeler E, Brune T, Rodriguez B, Bending GD, Cadisch G (2011b) Assessing the effect of organic residue quality on active decomposing fungi in a tropical Vertisol using 15N-DNA stable isotope probing. Fungal Ecol 4:115–119

    Article  Google Scholar 

  • Fearnside PM (2000) Global warming and tropical land-use change: greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Climate Change 46:115–158

    Article  CAS  Google Scholar 

  • Fernandes CME, Motavalli PP, Castilla C, Mukurumbira L (1997) Management control of soil organic matter dynamics in tropical land-use systems. Geoderma 79:49–67

    Article  CAS  Google Scholar 

  • Food and Agriculture Organisation (2009) Food security and agricultural mitigation in developing countries: options for capturing synergies. Rome, Italy

    Google Scholar 

  • Geiger SC, Manu A, Batiano A (1992) Changes in sandy soil following crop residue and fertilizer additions. Soil Sci Soc Am J 56:172–177

    Article  Google Scholar 

  • Guggenberger G, Frey SD, Sic J, Paustian K, Elliott ET (1999) Bacterial and fungal cell-wall residues in conventional and no-tillage agroecosystems. Soil Sci Soc Am J 63:1188–1198

    Article  CAS  Google Scholar 

  • Hai B, Diallo NH, Sall S, Haesler F, Schauss K, Bonzi M, Assigbetse K, Chotte J-L, Munch JC, Schloter M (2009) Quantification of key genes steering the microbial nitrogen cycle in the rhizosphere of sorghum cultivars in tropical agroecosystems. Appl Environ Microbiol 75:4993–5000

    Article  PubMed  CAS  Google Scholar 

  • He Z, Honeycutt W, Griffin TS (2003) Enzymatic hydrolysis of organic phosphorus in extracts and resuspensions of swine manure and cattle manure. Biol Fert Soils 38:78–83

    Article  Google Scholar 

  • He J, Zheng Y, Chen C, He Y, Zhang L (2008) Microbial composition and diversity of an upland red soil under long-term fertilization treatments as revealed by culture-dependent and culture-independent approaches. J Soils Sediment 8:349–358

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Fourth assessment report: climate change 2007. Switzerland, Geneva

    Book  Google Scholar 

  • Islam MR, Trivedi P, Madhaiyan M, Seshadri S, Lee GS, Yang JC, Kim YH, Kim MS, Han GH, Chauhan PS, Sa TM (2010) Isolation, enumeration, and characterization of diazotrophic bacteria from paddy soil sample under long-term fertilizer management experiment. Biol Fertil Soils 46:261–269

    Article  CAS  Google Scholar 

  • Jesus EC, Marsh TL, Tiedje JM, Moreira FMS (2009) Changes in land use alter the structure of bacterial communities in Western Amazon soils. ISME J 3:1004–1011

    Article  CAS  Google Scholar 

  • Jimenez JJ, Lal R (2006) Mechanisms of C sequestration in soils of Latin America. Crit Rev Plant Sci 25:337–365

    Article  CAS  Google Scholar 

  • Jörgensen RG, Castillo X (2001) Interrelationships between microbial and soil properties in young volcanic ash soils of Nicaragua. Soil Biol Biochem 33:1581–1589

    Article  Google Scholar 

  • Kaewpradit W, Toomsan B, Vityakon P, Limpinuntana V, Sanjun P, Jogloy S, Pathanothai A, Cadisch G (2008) Regulating mineral N release by mixing groundnut residues and rice straw under field conditions. Europ J Soil Sci 59:640–652

    Article  CAS  Google Scholar 

  • Kamaa M, Mburu H, Blanchart E, Chibole L, Chotte J, Kibunja C, Lesueur D (2011) Effects of organic and inorganic fertilization on soil bacterial and fungal microbial diversity in the Kabete long-term trial, Kenya. Biol Fertil Soils 47:315–321

    Article  Google Scholar 

  • Katapodis P, Christakopoulou V, Kekos D, Christakopoulos P (2007) Optimization of xylanase production by Chaetomium thermophilum in wheat straw using response surface methodology. Biochem Eng J 35:136–141

    Article  CAS  Google Scholar 

  • Keeler BL, Hobbie SE, Kellog LE (2009) Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: implications for litter and soil organic matter decomposition. Ecosystems 12:1–15

    Article  CAS  Google Scholar 

  • Kellner H, Luis P, Schlitt P, Buscot F (2009) Temporal changes in diversity and expression patterns of fungal laccase genes within the organic horizon of a brown forest soil. Soil Biol Biochem 41:1380–1389

    Article  CAS  Google Scholar 

  • Kellner H, Luis P, Zimdars B, Kiesel B, Buscot F (2008) Diversity of bacterial laccase-like multicooper oxidase genes in forest and grassland cambisol soil samples. Soil Biol Biochem 40:638–648

    Article  CAS  Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    Article  CAS  Google Scholar 

  • Lee CG, Watanabe T, Sato Y, Murase J, Asakawa S, Kimura M (2011) Bacterial populations assimilating carbon from 13C-labeled plant residue in soil: analysis by a DNA-SIP approach. Soil Biol Biochem 43:814–822

    Article  CAS  Google Scholar 

  • Leff JW, Nemergut DR, Grandy AS, O’Neill SP, Wickings K, Townsend AR, Cleveland CC (2012) The effects of soil bacterial community structure on decomposition in a tropical rain forest. Ecosystems 15:284–298

    Article  CAS  Google Scholar 

  • Lodge DJ (1985) Preliminary estimates of fungal biomass and nutrient stores in the litter and soil of a tropical rainforest. Agron Abstr Soil Sci Soc Am, pp. 158–159. Chicago, USA

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808

    Article  PubMed  CAS  Google Scholar 

  • Luis P, Kellner H, Martin M, Buscot F (2005) A molecular method to evaluate basidiomycete laccase gene expression in forest soils. Geoderma 128:18–27

    Article  CAS  Google Scholar 

  • Manjaiah KM, Voroney RP, Sen U (2000) Soil organic carbon stocks, storage profile and microbial biomass under different crop management systems in a tropical agricultural ecosystem. Biol Fertil Soils 32:273–278

    Article  CAS  Google Scholar 

  • Marumoto T, Anderson JPE, Domsch KH (1982) Mineralization of nutrients from soil microbial biomass. Soil Biol Biochem 14:469–475

    Article  CAS  Google Scholar 

  • McInerney MJ, Sieber JR, Gunsalus RP (2009) Syntrophy in anaerobic global carbon cycles. Curr Opin Biotechnol 20:623–632

    Article  PubMed  CAS  Google Scholar 

  • Murase J, Shibata M, Lee CG, Watanabe T, Asakawa S, Kimura M (2012) Incorpration of plant-residue-derived carbon into the microeukaryotic community in a rice field soil revealed by DNA-stable isotope probing. FEMS Microbiol Ecol 79:371–379

    Article  PubMed  CAS  Google Scholar 

  • Nannipieri P, Giagnoni L, Renella G, Puglisi E, Ceccanti B, Masciandaro G, Fornasier F, Moscatelli MC, Marinari S (2012) Soil enzymology: classical and molecular approaches. Biol Fertil Soils 48:743–762

    Article  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Europ J Soil Sci 54:655–670

    Article  Google Scholar 

  • Navarrete AA, Cannavan FS, Taketani RG, Tsai SM (2010) A molecular survey of the diversity of microbial communities in different Amazonian agricultural model systems. Diversity 2:787–809

    Article  CAS  Google Scholar 

  • Ndubuisi-Nnaji NUU, Adegoke AA, Ogbu HI, Ezenobi NO, Okoh AI (2011) Effect of long-term organic fertilizer application on soil microbial dynamics. Afr J Biotechnol 10:556–559

    Google Scholar 

  • Nemergut DR, Cleveland CC, Wieder WR, Washenberger CL, Townsend AR (2010) Plot-scale manipulations of organic matter inputs to soils correlate with shifts in microbial community composition in a lowland tropical rain forest. Soil Biol Biochem 42:2153–2160

    Article  CAS  Google Scholar 

  • Nüsslein K, Tiedje JM (1999) Soil bacterial community shift correlated with change from forest to pasture vegetation in a tropical soil. Appl Environ Microbiol 65:3622–3626

    PubMed  Google Scholar 

  • O’Neill B, Grossman J, Tsai TM, Gomes EJ, Lehmann J, Peterson J, Neves E, Thies EJ (2009) Bacterial community composition in Brazilian anthrosols and adjacent soils characterized using culturing and molecular identification. Microb Ecol 58:23–35

    Article  PubMed  Google Scholar 

  • Oelbermann M, Voroney RP, Gordon AM (2004) Carbon sequestration in tropical and temperate agroforestry systems: a review with examples from Costa Rica and southern Canada. Agr Ecosyst Environ 104:359–377

    Article  CAS  Google Scholar 

  • Palm CA, Gachego CN, Delve RJ, Cadisch G, Giller KE (2001) Organic inputs for soil fertility management in tropical agroecosystems: application of an organic resource database. Agric Ecosys Environ 83:27–42

    Article  Google Scholar 

  • Peng J, Lü Z, Rui J, Lu Y (2008) Dynamics of the methanogenic archaeal community during plant residue decomposition in an anoxic rice field soil. Appl Environ Microbiol 74:2894–2901

    Article  PubMed  CAS  Google Scholar 

  • Piccolo MC, Neill C, Cerri CC (1994) in soils along forest-to-pasture chronosequences in the western Brazilian Amazon Basin. Oecologia 99:112–117

    Article  Google Scholar 

  • Powlson SD, Hirsch RP, Brookes CP (2001) The role of soil microorganisms in soil organic matter conservation in the tropics. Nutr Cycl Agroecosys 61:41–51

    Article  Google Scholar 

  • Puttaso A, Vityakon P, Saenjan P, Trelo-ges V, Cadisch G (2011) Relationship between residue quality, decomposition patterns, and soil organic matter accumulation in a tropical sandy soil after 13 years. Nutr Cycl Agroecosys 89:159–174

    Article  Google Scholar 

  • Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649

    Article  PubMed  CAS  Google Scholar 

  • Ramson-Jones E, Jones DL, McCarthy AJ, McDonald JE (2012) The Fibrobacteres: an important phylum of cellulose-degrading bacteria. Microb Ecol 63:267–281

    Article  CAS  Google Scholar 

  • Rasche F, Knapp D, Kaiser C, Koranda M, Kitzler B, Zechmeister-Boltenstern S, Richter A, Sessitsch A (2011) Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest. ISME J 5:389–402

    Article  PubMed  CAS  Google Scholar 

  • Reiners WA, Bouwman AF, Parsons WFJ, Keller M (1994) Tropical rain forest conversion to pasture: changes in vegetation and soil properties. Ecol Appl 4:363–377

    Article  Google Scholar 

  • Rillig MC, Wright SF, Nichols KA, Schmidt WF, Torn MS (2001) Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 233:167–177

    Article  CAS  Google Scholar 

  • Roberts P, Bol R, Jones DL (2007) Free amino sugar reactions in soil in relation to soil carbon and nitrogen cycling. Soil Biol Biochem 39:3081–3092

    Article  CAS  Google Scholar 

  • Roh H, Yu CP, Fuller ME, Chu KH (2009) Identification of hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading microorganisms via 15N-stable isotope probing. Environ Sci Technol 43:2505–2511

    Article  PubMed  CAS  Google Scholar 

  • Rui J, Peng J, Lu J (2009) Succession of bacterial populations during plant residue decomposition in rice field soil. Appl Environ Microbiol 75:4879–4886

    Article  PubMed  CAS  Google Scholar 

  • Řzáčová V, Baldrian P, Hrselova H, Larsen J, Gryndler M (2007) Influence of mineral and organic fertilization on soil fungi, enzyme activities and humic substances in a long-term field experiment. Folia Microbiol 52:415–421

    Article  Google Scholar 

  • Sakurai M, Suzuki K, Onodera M, Shinano T, Osaki M (2007) Analysis of bacterial communities in soil by PCR–DGGE targeting protease genes. Soil Biol Biochem 39:2777–2784

    Article  CAS  Google Scholar 

  • Salamanca EF, Raubuch M, Joergensen RG (2002) Relationships between soil microbial indices in secondary tropical forest soils. Appl Soil Ecol 21:211–219

    Article  Google Scholar 

  • Sall NS, Masse D, Ndour BYN, Chotte J (2006) Does cropping modify the decomposition function and the diversity of the soil microbial community of tropical fallow soil? Appl Soil Ecol 31:211–219

    Article  Google Scholar 

  • Sangina N, Mulongoy K, Swift MJ (1992) Contribution of soil organisms to the sustainability and productivity cropping systems in the tropics. Agric Ecosyst Environ 41:135–152

    Article  Google Scholar 

  • Schimel J (1995) Ecosystem consequences of microbial diversity and community structure. In: Chapin FS, Korner C C (eds) Arctic and alpine diversity: patterns, causes and ecosystem consequences. Springer, Berlin, pp 239–254

    Chapter  Google Scholar 

  • Schlesinger WH (1986) Changes in soil carbon storage and associated properties with disturbance and recovery. In: Trabalka JR, Reichle DE (eds) The changing carbon cycle: a global analysis. Springer, Berlin, pp 194–220

    Chapter  Google Scholar 

  • Shaheen I, Bhatti HN, Ashraf T (2008) Production, purification and thermal characterisation of invertase from a newly isolated Fusarium sp. under solid-state fermentation. Int J Food Sci Technol 43:1152–1158

    Article  CAS  Google Scholar 

  • Shen J, Zhang L, Guo J, Ray LJ, He J (2010) Impact of long-term fertilization practices on the abundance and composition of soil bacterial communities in Northeast China. Appl Soil Ecol 46:119–124

    Article  Google Scholar 

  • Shreshta M, Shreshta PM, Conrad R (2011) Bacterial and archaeal communities involved in the in situ degradation of 13C-labelled straw in the rice rhizosphere. Environ Microbiol Rep 3:587–596

    Article  CAS  Google Scholar 

  • Siggins A, Gunnigle E, Abram F (2012) Exploring mixed microbial community functioning: recent advances in metaproteomics. FEMS Microbiol Ecol 80:265–280

    Article  PubMed  CAS  Google Scholar 

  • Six J, Frey DS, Thiet KR, Batten MK (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc J 70:555–569

    Article  CAS  Google Scholar 

  • Snedaker SC, Gamble JF (1969) Compositional analysis of selected second-growth species from lowland Guatemala and Panama. Bioscience 19:536–538

    Article  CAS  Google Scholar 

  • Srivastava SC, Singh JS (1988) Carbon and phosphorus in the soil biomass of some tropical soils of India. Soil Biol Biochem 20:743–747

    Article  CAS  Google Scholar 

  • Strickland MS, Callaham MA, Davies CA, Lauber CL, Ramirez K, Richter DD, Fierer N, Bradford MA (2009) Rates of in situ carbon mineralization in relation to land-use, microbial community and edaphic characteristics. Soil Biol Biochem 42:260–269

    Article  CAS  Google Scholar 

  • Stromgaard P (1991) Soil nutrient accumulation under traditional African agriculture in the miombo woodland of Zambia. Trop Agric 68:74–80

    CAS  Google Scholar 

  • Sugano A, Tsuchimoto H, Cho TC, Kimura M, Asakawa S (2005) Succession of methanotrophic archaea in rice straw incorporated into a Japanese rice field: estimation by PCR-DGGE and sequence analysis. Archaea 1:391–397

    Article  PubMed  CAS  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Studio in ecology, vol. 5. In: Anderson DJ, Greig-Smith P, Pitelka FA (eds) Influence of the physico-chemical environment on decomposition process. University of California Press, Berkeley, CA, pp 220–266

    Google Scholar 

  • Theron J, Cloete TE (2000) Molecular techniques for determining microbial diversity and community structure in natural environments. Crit Rev Microbiol 26:37–57

    Article  PubMed  CAS  Google Scholar 

  • Townsend AR, Asner GP, Cleveland CC, Lefer ME, Bustamante MC (1992) Unexpected changes in soil phosphorus dynamics along pasture chronosequences in the humid tropics. J Geophys Res 107:1–9

    Google Scholar 

  • Turner BL, Hanham RQ, Portararo AV (1977) Population pressure and agricultural intensity. Ann Assoc Am Geogr 67:384–396

    Article  Google Scholar 

  • Vanlauwe B, Bationo A, Chianu J, Giller KE, Merckx R, Mokwunye U, Ohiopehai O, Pypers P, Tabo R, Shepherd KD, Smaling EMA, Woomer PL, Sanginga N (2010) Integrated soil fertility management: operational definition and consequences for implementation and dissemination. Outlook Agr 39:17–24

    Article  Google Scholar 

  • Waldrop MP, Balser TC, Firestone MK (2000) Linking microbial community composition to function in a tropical soil. Soil Biol Biochem 32:1837–1846

    Article  CAS  Google Scholar 

  • Wardle DA, Giller KE (1996) The quest for a contemporary ecological dimension to soil biology. Soil Biol Biochem 28:1549–1554

    Article  CAS  Google Scholar 

  • World Bank (2009) World Development Report 2010: development and climate change. Washington, USA

    Book  Google Scholar 

  • World Bank (2010) Sustainable land management for mitigation of and adaptation to climate change. Washington, USA

    Google Scholar 

  • Wu L, Feinstein LM, Valverde-Barrantes O, Kershner MW, Leff LG, Blackwood CB (2011) Placing the effects of leaf litter diversity on saprophytic microorganisms in the context of leaf type and habitat. Microbial Ecol 61:399–409

    Article  Google Scholar 

  • Yang JC, Insam H (1991) Microbial biomass and relative contributions of bacteria and fungi in soil beneath tropical rain forest, Hainan Island, China. J Trop Ecol 7:385–393

    Article  Google Scholar 

  • Youssef NH, Elshahed MS (2009) Diversity rankings among bacterial lineages in soil. ISME J 3:305–313

    Article  PubMed  CAS  Google Scholar 

  • Yuste JC, Penuelas J, Estiarte M, Garcia-Mas J, Mattana S, Ogaya R, Pujol M, Sardans J (2011) Drought-resistant fungi control soil organic matter decomposition and its response to temperature. Glob Change Biol 17:1475–1486

    Article  Google Scholar 

  • Zheng Y, Zhang L-M, Zheng Y-M, Di H, He J-Z (2008) Abundance and community composition of methanotrophs in a Chinese paddy soil under long-term fertilization practices. J Soils Sediments 8:406–414

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the valuable comments and support by Mary Kamaa Musyoki and Esther Kathini Muema (University of Hohenheim, Institute of Plant Production and Agroecology in the Tropics and Subtropics) during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Rasche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rasche, F., Cadisch, G. The molecular microbial perspective of organic matter turnover and nutrient cycling in tropical agroecosystems - What do we know?. Biol Fertil Soils 49, 251–262 (2013). https://doi.org/10.1007/s00374-013-0775-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-013-0775-9

Keywords

Navigation