Skip to main content
Log in

Versions g1.0 and g1.1 of the LASG/IAP Flexible Global Ocean-Atmosphere-Land System model

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The latest two versions of the IAP Flexible Global Ocean-Atmosphere-Land System (FGOALS) model—versions g1.0 and g1.1, are described in this study. Both two versions are fully coupled GCMs without any flux correction, major changes for g1.1 mainly lie in four aspects: (1) advection schemes for tracer in the ocean component model; (2) zonal filter scheme in high latitudes in the ocean component model; (3) coupling scheme for fresh water flux in high latitudes; and (4) an improved algorithm of air-sea turbulent flux depending on the surface current of the ocean. As a result, the substantial cold biases in the tropical Pacific and high latitudes are improved by g1.1, especially g1.1 simulates more reasonable equatorial thermocline, poleward heat transport, zonal overturning stream function in the ocean and sea ice distribution than g1.0. Significant ENSO variability are simulated by both versions, however the ENSO behavior by g1.0 differs from the observed one in many aspects: about twice ENSO amplitude as observed, false ENSO asymmetry, only one peak period around 3 years, etc. Due to improved mean climate state by g1.1, many basic characteristics of ENSO are reproduced by g1.1, e.g., more reasonable ENSO amplitude, two peaks of power spectra for ENSO events, and positive SST skewness in the eastern Pacific as observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, S.-I., Y.-G. Ham, J.-S. Kug, F.-F. Jin, and I.-S. Kang, 2005: El Niño-La Niña asymmetry in the coupled model intercomparison project simulations. J. Climate, 18, 2617–2627.

    Article  Google Scholar 

  • Bonan, G. B., 1998: The land surface climatology of the NCAR land surface model coupled to the NCAR community climate model. J. Climate, 11, 1307–1326.

    Article  Google Scholar 

  • Bonan, G. B., K. W. Oleson, M. Vertenstein, S. Levis, X. Zeng, Y. Dai, R. E. Dickinson, and Z.-L. Yang, 2002: The land surface climatology of the community land model coupled to the NCAR community climate model. J. Climate, 15, 3123–3149.

    Article  Google Scholar 

  • Boville, B. A., and P. R. Gent: 1998: The NCAR climate system model, Version One. J. Climate, 11, 1115–1130.

    Article  Google Scholar 

  • Boucher, O., and M. Pham, 2002: History of sulfate aerosol radiative forcings. Geophys. Res. Lett., 29(9), 1308, doi: 10.129/2001GL014048.

    Article  Google Scholar 

  • Burgers, G., and D. B. Stephenson, 1999: The “normality” of El Niño. Geophys. Res. Lett., 26, 1027–1030.

    Article  Google Scholar 

  • Bryan, F. O., B. G. Kauffman, W. G. Large, and P. R. Gent, 1996: The NCAR CSM flux coupler. NCAR Tech. Note 424, NCAR, Boulder, CO 80307, 50pp.

    Google Scholar 

  • Chen, K., 1994: Improvement of IAP global coupled ocean-atmosphere general circulation model and numerical simulation of climate change induced by the enhanced greenhouse effect. Ph. D. dissertation, Institute of Atmospheric Physics, Chinese Academy of Sciences, 145pp. (in Chinese)

  • Chen, K., X. Jin, and X. Zhang, 1997a: Discussion on the sensitivity and climate drift of coupled oceanatmosphere GCM. Acta Oceanologia Sinica, 19(2), 38–51. (in Chinese)

    Google Scholar 

  • Chen, K., X. Zhang, and X. Jin, 1997b: A coupled ocean-atmosphere general circulation model for studies of global climate changes, I. Formulation and performance of the model. Acta Oceanologia Sinica, 19(3), 21–32. (in Chinese)

    Google Scholar 

  • Collins, W. D., and Coauthors, 2003: Description of the NCAR Community Atmosphere Model (CAM2). National Center for Atmospheric Research, Boulder, Colorado, 171pp.

    Google Scholar 

  • Dai, F. S., R. C. Yu, X. H. Zhang, and Y. Q. Yu, 2005: A statistical low-level cloud scheme and its tentative application in a general circulation model. Acta Meteorologica Sinica, 19, 263–274.

    Google Scholar 

  • Dong, B.-W., and R. T. Sutton, 2002: Adjustment of the coupled ocean-atmosphere system to a sudden change in the thermohaline circulation. Geophys. Res. Lett., 29, 1728, doi: 10.1029/2002GL015229.

    Article  Google Scholar 

  • Guilyardi, E., 2006: El Niño-mean state-seasonal cycle interactions in a multi-model ensemble. Climate Dyn., 26, 329–348, doi: 10.1007/s00382-005-0084-6.

    Article  Google Scholar 

  • Hunke, E. C., and J. K. Dukowicz, 1997: An elasticviscous-plastic model for sea ice dynamics. J. Phys. Oceanogr., 27, 1849–1867.

    Article  Google Scholar 

  • Jin, F.-F., S.-I. An, A. Timmermann, and J. Zhao, 2003: Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett., 30, 1120, doi: 10.1029/2002GL016356.

    Article  Google Scholar 

  • Jin, X. Z., X. H. Zhang, and T. J. Zhou, 1999: Fundamental framework and experiments of the third generation of IAP/LASG world ocean general circulation model, Adv. Atmos. Sci., 16(2), 197–215.

    Article  Google Scholar 

  • Kiehl, J. T., and P. R. Gent, 2004: The community climate system model, Version 2. J. Climate, 17, 3666–3682.

    Article  Google Scholar 

  • Kiehl, J. T., J. Hack, G. Bonan, B. Boville, B. Briegleb, D. Williamson, and P. Rasch, 1996: Description of the NCAR Community Climate Model (CCM3). Technical Report NCAR/TN-420+STR, National Center for Atmospheric Research, Boulder, Colorado, 152pp.

    Google Scholar 

  • Kiehl, J. T., J. J. Hack, and J. W. Hurrell, 1998: The energy budget of the NCAR Community Climate Model: CCM3. J. Climate, 11, 1151–1178.

    Article  Google Scholar 

  • Latif, M., K., and Coauthors, 2001: ENSIP: The El Niño simulation intercomparison project. Climate Dyn., 18, 255–276, doi: 10.1007/s003820100174.

    Article  Google Scholar 

  • Lean, J., J. Beer, and R. Bradley, 1995: Reconstruction of solar irradiancesince 1610: Implications for climate change. Geophys. Res. Lett., 107(D18), 4347, doi: 10.1029/2001JD001143.

    Google Scholar 

  • Li, J. L., X. H. Zhang, Y. Q. Yu, and F. S. Dai, 2004: Primary reasoning behind the double ITCZ phenomenon in a coupled ocean-atmosphere general circulation model. Adv. Atmos. Sci., 21, 857–867.

    Article  Google Scholar 

  • Li, L. J., B. Wang, Y. Q. Wang, and H. Wan, 2007: Improvements in climate simulation with modifications to the Tiedtke convective parameterization in the Grid-point Atmospheric Model of IAP LASG (GAMIL). Adv. Atmos. Sci., 24(2), 323–335, doi: 10.1007/s00376-007-0323-3.

    Article  Google Scholar 

  • Liu, H., and G. Wu, 1997: Impacts of land surface on climate of July and onset of summer monsoon: A study with an AGCM plus SSiB. Adv. Atmos. Sci., 14, 289–308.

    Article  Google Scholar 

  • Liu, H., X. Jin, X. Zhang, and G. Wu, 1996: A coupling experiment of an atmosphere and an ocean model with a monthly anomaly exchange scheme. Adv. Atmos. Sci., 13, 133–146.

    Article  Google Scholar 

  • Liu, H., X. Zhang, and G. Wu, 1998: Cloud feedback on SST variability in western equatorial Pacific in a CGCM. Adv. Atmos. Sci., 15(3), 410–423.

    Google Scholar 

  • Liu, H. L., Y. Q. Yu, X. H. Zhang, and W. Li, 2004: Manual for LASG/IAP Climate System Ocean Model. Science Press, Beijing, 108pp. (in Chinese)

    Google Scholar 

  • Luo, J. J., S. Masson, E. Roeckner, G. Madec, and T. Yamagata, 2005: Reducing climatology bias in an ocean-atmosphere CGCM with improved coupling physics. J. Climate, 18(13), 2344–2360.

    Article  Google Scholar 

  • Manabe, S., and R. J. Stouffer, 1993: Century-scale effects of increased atmospheric CO2 on the ocean-atmosphere system. Nature, 364, 215–218.

    Article  Google Scholar 

  • Neelin, D., and F.-F. Jin, 1993: Modes of interannual tropical ocean-atmosphere interaction—A unified view. Part II: Analytical results in the weak-coupling limit. J. Atmos. Sci., 50, 3504–3522.

    Article  Google Scholar 

  • Neelin, D., and H. A. Dijkstra, 1995: Ocean-Atmosphere Interaction and the Tropical Climatology. Part I: The Dangers of Flux Correction. J. Climate, 8, 1325–1342.

    Article  Google Scholar 

  • Parkinson, C. L., and W. M. Washington, 1979: A largescale numerical model of sea ice. J. Geophys. Res., 84, 311–337.

    Article  Google Scholar 

  • Rahmstorf, S., 2003: Thermohaline circulation: The current climate. Nature, 421, 699–701, doi: 10.1038/421699a.

    Article  Google Scholar 

  • Russell, J. L., R. J. Stouffer, and K. W. Dixon, 2006: Intercomparison of the Southern Ocean circulations in IPCC coupled model control simulations. J. Climate, 19, 4560–4575.

    Article  Google Scholar 

  • Schneider, B., M. Latif, and A. Schmittner, 2007: Evaluation of different methods to assess model projections of the future evolution of the Atlantic meridional overturning circulation. J. Climate, 20, 2121–2132.

    Article  Google Scholar 

  • Stocker, T. F, and A. Schmittner, 1997: Influence of CO2 emission rates on the stability of the thermohaline circulation. Nature, 388, 862–865.

    Article  Google Scholar 

  • Stouffer, R. J., and Coauthors, 2006: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19, 1365–1387.

    Article  Google Scholar 

  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 3433–3443.

    Article  Google Scholar 

  • Trenberth, K. E., and D. P. Stepaniak, 2001: Indices of El Niño Evolution. J. Climate, 14, 1697–1701.

    Article  Google Scholar 

  • Wang, B., H. Wan, Z. Z. Ji, X. Zhang, R. C. Yu, Y. Q. Yu, and H. L. Liu, 2004: Design of a new dynamical core for global atmospheric models based on some efficient numerical methods. Science in China (A), 47, 4–21.

    Article  Google Scholar 

  • Wang, X. C., J. P. Liu, Y. Q. Yu, H. L. Liu, and L. J. Li, 2009: Numerical simulation of polar climate with FGOALS_g1.1. Acta Meteorologica Sinica, 67, 961–972. (in Chinese)

    Google Scholar 

  • Weatherly, J. W., B. P. Briegleb, W. G. Large, and J. A. Maslanik, 1998, Sea ice and polar climate in the NCAR CSM. J. Climate, 11, 1472–1486.

    Article  Google Scholar 

  • Wu, G. X., H. Liu, Y. C. Zhao, and W. P. Li, 1996: A nine-layer atmospheric general circulation model and its performance. Adv. Atmos. Sci., 13(1), 1–18.

    Article  Google Scholar 

  • Xiao, C., 2006: Adoption of a two-step shape-perserving advection scheme in an OGCM and its coupled experiment. M. S. thesis, Institute of Atmospheric Physics, Chinese Academy of Sciences, 89pp. (in Chinese)

  • Xiao, C., and Y. Q. Yu, 2006: Shape-perserving advection scheme and its application to an OGCM. Progress in Natural Science, 16, 1442–1448. (in Chinese)

    Google Scholar 

  • Xue, Y., P. J. Sellers, J. L. Klinter III, and J. Shukla, 1991: A simplified biosphere model for use within general circulation models. J. Climate, 4, 345–364.

    Article  Google Scholar 

  • Yan, L., Y. Q. Yu, B. Wang, L. J. Li, and P. X. Wang, 2009: ENSO Hindcast Experiments Using A Coupled GCM. Atmospheric and Oceanic Science Letters, 2(1), 7–13.

    Google Scholar 

  • Yu, R. C., 1994: a two-step shape-preserving advection scheme. Adv. Atmos. Sci., 11, 79–90.

    Article  Google Scholar 

  • Yu, Y. Q., and X. H. Zhang, 1998: A modified air-sea flux anomaly coupling scheme. Chinese Science Bulletin, 43(8), 866–870. (in Chinese)

    Google Scholar 

  • Yu, Y. Q., and D.-Z. Sun, 2009: Response of ENSO and mean state of the Tropical Pacific to extra-tropical cooling and warming: A study using the IAP coupled model. J. Climate, 22, 5902–5917.

    Article  Google Scholar 

  • Yu, Y. Q., R. C. Yu, X. H. Zhang, and H. L. Liu, 2002: A flexible global coupled climate model. Adv. Atmos. Sci., 19, 169–190.

    Article  Google Scholar 

  • Yu, Y. Q., X. H. Zhang, and Y. F. Guo, 2004: Global coupled ocean-atmosphere general circulation models in LASG/IAP. Adv. Atmos. Sci., 21, 444–455.

    Article  Google Scholar 

  • Yu, Y. Q., G. R. Jiang, and J. H. He, 2007a: Numerical simulation of the intraseasonal oscillation Part II: Impact of global warming. Chinese J. Atmos. Sci.,31, 577–585. (in Chinese)

    Google Scholar 

  • Yu, Y. Q., W. P. Zheng, H. L. Liu, X. H. Zhang, 2007b: The LASG coupled climate system model FGCM-1.0. Chinese Journal of Geophysics, 50, 1454–1455.

    Google Scholar 

  • Yu, Y. Q., H. Zhi, B. Wang, H. Wan, H. L. Liu, W. Li, T. J. Zhou, and W. P. Zheng, 2008: Coupled model simulations of climate changes in the 20th century and beyond. Adv. Atmos. Sci., 25, 641–654.

    Article  Google Scholar 

  • Zeng, Q. C, X. H. Zhang, X. Z. Liang, and S. F. Chen, 1989: Documentation of IAP two-level atmospheric general circulation model. DOE/ER/60314-H1, TR044, 383pp.

  • Zhang, R., and T. Delworth, 2005: Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Climate, 18, 1853–1860.

    Article  Google Scholar 

  • Zhang, X. H., and X. Z. Liang, 1989: A numerical world ocean general circulation model. Adv. Atmos. Sci., 6, 43–61.

    Google Scholar 

  • Zhang, X. H., N. Bao, R. C. Yu, and W. Q. Wang, 1992: Coupling scheme experiments based on an atmospheric and an oceanic GCM. Chinese J. Atmos. Sci., 16(2), 129–144.

    Google Scholar 

  • Zhang, X. H., K. M. Chen, X. Z. Jin, W. Y. Lin, and Y. Q. Yu, 1996: Simulation of thermohaline circulation with a twenty-layer oceanic general circulation model. Theoretical and Applied Climatology, 55(1–4), 65–87.

    Article  Google Scholar 

  • Zhang, X. H., G. Y. Shi, H. Liu, and Y. Q. Yu, 2000: IAP Global Ocean-Atmosphere-Land System Model. Science Press, Beijing, New York, 252pp.

    Google Scholar 

  • Zhang, X. H., Y. Q. Yu, R. C. Yu, H. L. Liu, T. J. Zhou, and W. Li, 2003: Assessments of an OGCM and the relevant CGCM Part I: Annual mean simulations in the tropical ocean. Chinese J. Atmos. Sci., 27, 649–970. (in Chinese)

    Google Scholar 

  • Zheng, W. P., and Y. Q. Yu, 2009: The Asian monsoon system of the middle Holocene simulated by a coupled GCM. Quaternary Science, 29, 1135–1145. (in Chinese)

    Google Scholar 

  • Zhou, T. J, and Coauthors, 2005: The climate system model FGOALS_s using LASG/IAP spectral AGCM SAMIL as its atmospheric component. Acta Meteorologica Sinica, 63, 702–715. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqiang Yu  (俞永强).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y., Zheng, W., Wang, B. et al. Versions g1.0 and g1.1 of the LASG/IAP Flexible Global Ocean-Atmosphere-Land System model. Adv. Atmos. Sci. 28, 99–117 (2011). https://doi.org/10.1007/s00376-010-9112-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-010-9112-5

Key words

Navigation